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Introduction 

Rotation in inference from and description 
of data are discussed in this paper.  Fig. 1 
shows that data are generated by latent 
variables and information contained in the 
data is represented by components, the 
number of which is less than the 
dimensionality of the data.  Both in 
inference and in description, we can 
determine the optimum spaces with respect 
to the data, but to identify the axes we need 
some criteria  outside of statistics.  In 
identifying the axes, which have substantial 
meanings, rotation is used.  First, consider 
rotation in inference. 
 

Rotation in Inference 

Here I suppose that data are generated by 
a factor analytic model.  I set the following 
linear model: 

resAfx +′=                (1) 

where [ ]pxx L1=x  is a p-dimensional 

random vector of generated data, 

[ ]qff L1=f  is a q-dimensional random 

vector of latent variables, A  a p×q matrix 

of factor pattern and [ ]pee L1=res  a 

p-dimensional random vector of residuals.  
res  is assumed to be independent of f .   
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Figure 1. Inference and Description in Data Analysis. 



  Eq. (1) can be rewritten as follows, 
( )( ) resATfTx +′= −1         (2) 

Rotation matrix T  in eq. (2) means that we 
can identify only the space ( )fS  spanned 
by f .  Many procedures have been 
proposed to identify ( )fS . 
  From the model (1), we have a correlation 
matrix R  of x  as follows 

( ) ( ) ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ ′+′⋅′⋅=′= resresAffAxxR EEE  

If the assumption  

( ) ( )⎟
⎠
⎞⎜

⎝
⎛ ′ resresE = a diagonal matrix, 

which is needed to reduce the number of free 
parameters but seems to be implausible, is 
adopted, we can determine A  so as to 
minimize the differences between 
corresponding off-diagonal elements of R  
and AA ′  with the convention ( ) Iff =′E . 
  But, without the assumption 

( ) ( )⎟
⎠
⎞⎜

⎝
⎛ ′ resresE = a diagonal matrix, 

more direct approach aims at minimizing 
the difference between x  and Af ′ .  When 
the N  observed data of x  is denoted as  
an N×p matrix X  and the corresponding 
values of the latent variables f  by an N×q 
matrix F , this direct approach (see 
Okamoto, 2005) estimates F  and A  by 
minimizing 

2AFX ′−                (3) 

  But eq. (2) shows that by criterion (3), we 
can only determine the space ( )FS .  To 
find substantial axes, we need information 
outside of statistics 
 

Rotation in Description 

  Next, let’s consider rotation in description.  
Information contained in data X  can be 
summarized in various ways, one of which is 
reduction of dimensionality of X .  The 
simplest method to see a low dimensional 
shape of the distribution of data X  is to see 
a shadow of X  on an appropriate space of 
lower dimensionality than that of X .  
Mathematically, this can be done by the 
orthogonal projection P , which results in 
the maximum dispersion of the projected 
data XP (Okamoto, 2006). 
  The orthogonal projection P  determines 
just the space XP , the shadow of X  by P .  
Coordinates of a point in XP  are given by 

any basis { }qbb ,,1 L .  When ib ’s are 

orthogonal, the matrix of coordinates are 
given by 

[ ]qbbXP L1  

Any other basis { }qvv L1  can be related to 

{ }qbb ,,1 L  by some rotation matrix T  as 

follows, 

[ ] [ ]′=′
qq bbTvv LL 11       (4) 

  By eq. (4), we can find substantial basis, 
which is determined by criterion outside of 
statistics. 
 
Conclusion 

  If we see only mathematical calculations 
needed to minimize eq. (3) and those to find 
the optimum orthogonal projection P , they 



are the same ones, which are based on 
singular value decomposition of X , and 
called by the same name Principal 
Component Analysis.  But, from the 
standpoint of substantial science, they are 
quite different.  Minimization of eq. (3) 
seeks the best inference about the latent 
space, and the orthogonally projected data 
XP  is optimum description of X  in the 
space of lower dimensionality than that of 
X .  Inference and description should be 
distinguished.  Inference is based on some 
model, some aspects of which are estimated 
from the data X .  On the other hand, 
description is reduction of data, which 
summarizes some aspects of the data X .  
Description does not need any model, but 
inference is always linked to some model.  
Hence, the method to minimize eq. (3) and 
that to seek optimum projection P  should 
be called by different names (Okamoto, 2005, 
2006).  If the method to optimize 
orthogonally projected data XP  is called 
principal component analysis, which 
describe information in the data by reduced 
dimensionality, the other one to minimize eq. 
(3) should be called factor analysis, by which 
we infer the latent space,   In both cases, 
rotations play the role to find substantial 
directions in the mathematically determined 
space, where the initial axes are derived to 
find the space by criterions set by technical 
necessity. 
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