Rotation in Inference and Description

Yasuharu Okamoto

Faculty of Integrated Arts and Social Sciences

Japan Women’s University

Introduction

Rotation in inference from and description
of data are discussed in this paper. Fig. 1
shows that data are generated by latent
variables and information contained in the
data is represented by components, the
than the

Both in

in description, we can

of which 1is less

data.

number
dimensionality of the
inference and
determine the optimum spaces with respect
to the data, but to identify the axes we need
some criteria outside of statistics. In
identifying the axes, which have substantial

meanings, rotation is used. First, consider

rotation in inference.
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Rotation in Inference

Here I suppose that data are generated by
a factor analytic model. I set the following
linear model:

x =fA’+res (1)
where x= [x1 s X p] is a p-dimensional
random  vector of generated data,
f= [fl ~~-fq] is a qg-dimensional random
vector of latent variables, A a px q matrix

of factor pattern and res:[elmep] a

p-dimensional random vector of residuals.

res is assumed to be independent of f.
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Figure 1. Inference and Description in Data Analysis.



Eq. (1) can be rewritten as follows,
X = (iT)(T“A')+ res (2)
Rotation matrix T in eq. (2) means that we
can identify only the space § (f ) spanned
by f . Many procedures have been
proposed to identify S (f) .
From the model (1), we have a correlation

matrix R of x as follows
1R:E&kﬁuxEﬂTyAu4{&af&mﬂ
If the assumption

E ((res), (res)j = a diagonal matrix,

which is needed to reduce the number of free
parameters but seems to be implausible, is
adopted, we can determine A so as to
between

minimize the differences

corresponding off-diagonal elements of R

and AA’ with the convention E(ff)=1.

But, without the assumption
’
E ((res) (res)j = a diagonal matrix,

more direct approach aims at minimizing
the difference between X and fA’. When
the N observed data of X is denoted as
an Nx p matrix X and the corresponding
values of the latent variables f by an Nx g
direct approach (see

Okamoto, 2005) estimates F and A by

matrix F , this

minimizing

2
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But eq. (2) shows that by criterion (3), we
can only determine the space S(F ) To
find substantial axes, we need information

outside of statistics

Rotation in Description

Next, let’s consider rotation in description.
Information contained in data X can be
summarized in various ways, one of which is
reduction of dimensionality of X . The
simplest method to see a low dimensional
shape of the distribution of data X 1is to see
a shadow of X on an appropriate space of
lower dimensionality than that of X .
Mathematically, this can be done by the
orthogonal projection P, which results in
the maximum dispersion of the projected
data XP (Okamoto, 2006).

The orthogonal projection P determines
just the space XP, the shadow of X by P.

Coordinates of a point in XP are given by

any basis {bl,m,bq}‘ When b, ’s are

orthogonal, the matrix of coordinates are

given by

XPb, b, |
Any other basis {Vl -~-Vq} can be related to

{bl,-“,bq} by some rotation matrix T as

follows,
[Vl...vq]'zT[bl...bq]' (4)

By eq. (4), we can find substantial basis,
which is determined by criterion outside of

statistics.

Conclusion
If we see only mathematical calculations
needed to minimize eq. (3) and those to find

the optimum orthogonal projection P, they



are the same ones, which are based on
singular value decomposition of X, and
called by the

Component Analysis.

same name Principal

But, from the
standpoint of substantial science, they are
quite different. Minimization of eq. (3)
seeks the best inference about the latent
space, and the orthogonally projected data
XP is optimum description of X in the
space of lower dimensionality than that of
X . Inference and description should be
distinguished. Inference is based on some
model, some aspects of which are estimated
from the data X . On the other hand,
description 1is reduction of data, which
summarizes some aspects of the data X.
Description does not need any model, but
inference is always linked to some model.
Hence, the method to minimize eq. (3) and
that to seek optimum projection P should

be called by different names (Okamoto, 2005,

2006). If the method to optimize
orthogonally projected data XP is called
principal component analysis, which

describe information in the data by reduced
dimensionality, the other one to minimize eq.
(3) should be called factor analysis, by which
we infer the latent space, In both cases,
rotations play the role to find substantial
directions in the mathematically determined
space, where the initial axes are derived to
find the space by criterions set by technical

necessity.

References
Okamoto, Y. (2005). On the special type of

principal component analysis: It should

belong to factor analysis. Japan Women's
University Journal, 16, 43-50.
Okamoto, Y. (2006).

rotation in

A justification of
principal  component
analysis: Projective viewpoint of PCA.
Japan Women's University Journal, 117,

59-71.



