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５．多重精度算術演算1 
 

Delphi における整数型は、８ビット長のもの（Shortint、Byte）、１６ビット長のもの

（Shortint、Word）、３２ビット長のもの（Longint）がある。Delphi５ではさらに、３２

ビット長のものとして Longword、６４ビット長のものとして Int64が用意されている。こ

れらの整数型より桁数の多い整数を扱うときは、必要な桁数に対応した型を用意する必要

がある。用意した型のデータの処理・演算は、多重精度算術演算（１）、（２）と呼ばれているア

ルゴリズムによって行うことができる。多重精度算術演算を、ここでは２進数表記に対し

て行う。まず、有限桁数の２進数表記の演算について説明する。 

 

２進数表記の演算 

正整数９は２進数で表わすと 

 
0123 012020219 ×+×+×+×=  

となる。すなわち、 

210 10019 =  

 

と表わせる。数値の右下に付けられている１０や２の数は、それぞれ１０進数表記、２進

数表記であることを明記するためのものである。 

整数３０は 
01234 002121212130 ×+×+×+×+×=  

と表わせる。すなわち、 

210 1111030 =  

と表わせる。 

２進数４桁で０～１５の数が表わせる。２進数は４桁ずつ区切ることによって簡単に１

６進数表記に変換できる。 211110 を右から４桁ずつに区切ると、1と1110に分けられる（図

１）。 

 

 

                                                   

1 この解説は、TRY!PC,2000 年７月号「Delphi による数値計算プログラミングのすすめ：第５回 

多重精度算術演算・方程式の根の計算」の原稿をもとにしたものです。 
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図１  ２進数の１６進数への変換。Eは 16進数おいて１４を表わす。 

 

1110は１０進数で 14248 =++ を表わすが、１４は１６進数では英字ｅまたはＥで表わす。

したがって、 

16210 11111030 E==  

 

と書ける。１６進数は、Delphiでは＄を付けて＄1Eと表わし、C++では先頭に 0xまたは

0Xを付けて 0X1Eと表わす。 

コンピュータのメモリーは、８ビットを１バイトとして数える。１ビットは２進数の１

桁に対応する。４ビットで２進数４桁、すなわち１６進数１桁、を表わすので、１バイト

は１６進数で２桁を表わすことになる。 

コンピュータにおいて、整数は、必要ならば左側に０を置くことにより、型によって決

まった桁数（ビット数）の２進数で表わされる。Shortint 型の場合は 1 バイトすなわち８

ビットで表わされるので、２進数で８桁までの数が表わされる。演算の結果が８桁を超え

たときは、その超えた桁はメモリーに保持されずに消える（３）。 

例えば、 

222 1000000000)00001000()01000000( =×  

 

の場合、右辺は８桁を超える数なので０になる（図 2）。 

 

 
図２  Shortint は８ビットなので、演算結果

が２進数で８桁を超えた部分は消える。 
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２進数で８桁を超えた部分が消えてしまうということは、 82 を法とする演算を行うこと
と同じである。すなわち、 

 
8

22 2  mod  0)00001000()0100000( ≡×  

 

ということである。 

  82 を法とする演算では、 

   
8

22 2  mod  0)11111111()00000001( ≡+  

となる。 
82 を法とする演算、すなわち Shortint型での演算では、１に 2)11111111( を足すと０に

なる。したがって、 2)11111111( はー１と同じ働きをしている。Shortint 型では、最高位

の桁が１である数は、それとの加算を行ったとき０となる数の負の値を表わすとみなす。

２の負の数‐２は、 

 
8

222 2  mod  0100000000)11111110()00000010( ≡=+  

 

となるので、 2)11111110( が‐２を表わす。 

コンピュータでは、数値は２進数で表わされ、演算は２のべき乗を法とする演算になっ

ている。ｎビット（ｎ桁）の表記では、 n2 を法とする演算になる。負の数は、最高位の桁
が１のもので表わされる。 

 

ｎ＝８の場合の n2 を法とする演算結果を確認するプロジェクトを PCkModular.dprとし

て用意した。このプロジェクトを実行すると、図３のようなフォームが表示される。 
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ａの入力行 

ｂの入力行 

ａとｂの 
演算結果 

 

     図３ PCkModular.dpr の実行開始時のフォーム 

 

 

上の行と中の行に２つの整数値を設定する。設定は、Byteと ShortIntの２つの欄のいずれ

かで行う。Binaryの表示の下の欄の Editコンポーネントは表示専用である。Byteの下の

欄は、８桁までの２進数を０～255の範囲で設定する。この範囲を超えたり、不適当な文字

が設定されると、範囲内の数値に適当に変換されたり、空白になったりする。Byte の欄に

値を設定すると、そのときの値に対応した２進数表記がBinaryの欄に表示される。ShortInt

の欄には、８桁目を符号ビットとみた符号付き整数としての値が表示される。例えば、Byte

欄に 255 を設定すると、ShortInt欄には－1が表示される。逆に、ShortInt 欄に－1を設

定すると、Byte欄には 255が表示される。 

上段と中段にそれぞれ数値を設定してから、「Sum」あるいは「Mul」ボタンをクリック

すると、上段の数と中段の数の和、あるいは、積が算出されて下段に表示される。－１と

－128の和が図４に、積が図５に示されている。 
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「Sum」のクリックで和の計算 
 

図４ 82 を法とする和の計算 
 

「Mul」のクリックで積の計算 
 

図５ 82 を法とする積の計算 
 

普通の１０進数での演算結果が８桁を超えるときは、このように普通の整数値の計算とは

異なった感じの結果になることがある。しかし、普通の１０進数での演算結果が８桁を超

えない場合、例えば－1と－２の計算の場合は、図６a、図６ｂのように ShortIntの欄の値

は普通の整数値の演算と同じ結果になっている。図６の場合、Byte 欄および Binary 欄に
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おける演算結果は 28を法とするものである。 

 
図６ａ  －１と－２の和 

 

 
図６ｂ  －１と－２の積 

 

 

Knuth(1998)（２）の表記法 

正整数ｐの２進数表記 

            0
0

1
1

2
2

1
1 2222 ×+×++×+×= −

−
−

− uuuup n
n

n
n L  

をここでは Knuth（1998）に従って 
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20121 )( uuuup nn L−−=  

 

と表わす。Knuth(1981)の訳（1986）（１）では、添字は 221 )( nuuu L というように昇順であ

るが、ここでは Knuth(1998)の方に従う。 

正整数ｐがｂ進法で 

0
0

1
1

2
2

1
1 bvbvbvbvp m

m
m

m ×+×++×+×= −
−

−
− L  

と表わされるときは 

bmm vvvvp )( 0121 L−−=  

 

と表わす。ｂは基数（baseまたは radix）という。 

コンピュータでは、2進数４桁をまとめて、 1624 = を基数として整数を表わすことがあ
る。ここでは、プログラミングが簡単になるように、２進数７桁をまとめて、 12827 = を

基数とする。128 を基数とする１５桁の表記法は、２進数で 105157 =× 桁の数が扱える。
1052 は１０進数で３２桁の数なので、１２８を基数とする１５桁の表記法では、１０進数で
３２桁ぐらいまでの整数が扱えることになる。 

  ｎビットの整数が１０進数による表記で何桁になるのかを求めるプロジェクトとして

PCheck.dprを用意した。プロジェクト PCheck.dpr を実行すると、図７のようなフォー

ムが表示される。 

 

図７  ビット数から１０進数での桁数を求める 

 

「ビット数」の右側の Edit コンポーネント内にビット数を設定して「Calc」ボタンを

クリックすると、「桁数」の右側に１０進数表記での桁数が表示される。 
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多重精度整数型 TBigInt 

多重精度算術演算のための型 TBigInt をユニットファイル UBigInt.pas に用意した。

TBigIntは、以下のように宣言されている。 

 

type TBigInt = array[0..NBigInt-1] of byte; 

 

  TBigInt型は、byte型を要素とする配列である。byte型の各要素の最上位のビット（MSB、

Most Significant Bit）はキャリービットとして使い、１byte中の下位７ビットで２進数の

各桁を表わす。したがって、byte型の各要素は、 12827 = 進数表記での各桁に対応する（図

８）。 

 

図８  TBigInt 型の構成 

 

 

ユニットファイルUBigInt.pasでは 

 

const  NBigInt = 15; 

 

と宣言されているので、 105157 =× ビットの整数が扱える。105ビットの中で最上位ビッ

トは符号ビットとして使うので、 1042− から 12104 − までの整数値を表わすことができる。 

 

プロジェクト PTable.dprは、TBigInt型を用いて多重精度の整数値の和を求めるもので

ある。整数値はグリッドのセルに設定する（図９）。 
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左詰ボタン 右詰ボタン 
 

図９  和を求める整数値の設定 

 

 

 

グリッドは、「追加」ボタンのクリックで行を追加することができる。データ設定用セルを

クリックしてから「追加」ボタンをクリックすると、クリックしておいたセル（アクティ

ブなセル）の下に行が追加される。不用なセルは、そのセルをクリックしてから「削除」

ボタンをクリックすると削除される。全てのデータ設定用セルに数値を設定した後、「計

算」ボタンをクリックすると、データの総和が下の Editコンポーネントに表示される（図

１０）。 
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図 10  「計算」ボタンのクリックで和が求まる 

 

「===>」ボタンをクリックすると、表示が右詰になる。左詰にするときは、「<===」ボタ

ンをクリックする。データの訂正のときは、左詰の方がやり易い。 

 

 

 

ユニット UBigInt 

多重精度演算のためのユニットファイル UBigInt.pas には、表１の関数が用意されてい

る。 
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表１  ユニット UBigInt.pas に用意されている関数 

 
  function BigAdd( a, b : TBigInt ) : TBigInt; 

 
 

ａとｂの和を関数値とする 
 

 
function BigSub( a, b : TBigInt ) : TBigInt; 

 
 

ａとｂの差を関数値とする 
 

 
function BigMul( a, b : TBigInt ) : TBigInt; 

 
 

ａとｂの積を関数値とする 
 

 
function BigDiv( a, b : TBigInt ) : TBigInt; 

 
 

ａをｂで割った商を関数値とする 
 

 
function BigMod( a, b : TBigINt ) : TBigInt; 

 
 

ａをｂで割った剰余を関数値とする 
 

 
function StrToBig( s : string ) : TBigInt; 

 
 

文字列ｓの表わす整数値を TBigInt 型として返す 
 

 
function BigToStr( a : TBigInt ) : string; 

 
   
ａの値を表わす整数値を（符号と）数字の文字列として返す。 
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function BigToFloat( a : TBigInt ) : Extended; 

   
 

ａの表わす整数値を Extended 型として返す 
 

 
function BigALB( a , b : TBigInt ) : Boolean; 

  
 

ａ＜ｂのときは True、それ以外のとき False を関数値とする 
 

 
function BigALEB( a, b : TBigInt ) : Boolean; 

 
 

ａ≦ｂのときは True、それ以外のときは False を関数値とする 
 

 
function BigAGB( a , b : TBigInt ) : Boolean; 

 
 

ａ＞ｂのときは True、それ以外のときは False を関数値とする 
 

 
function BigAGEB( a, b : TBigInt ) : Boolean; 

 
 

ａ≧ｂのときは True、それ以外のときは False を関数値とする 
 

 
function BigAEB( a, b : TBigInt ) : Boolean; 

 
 

ａ＝ｂのときは True、それ以外のときは False を関数値とする 
 

 

これらの関数では、TBigInt型の整数の加減乗除の演算を基礎として処理が行われている。

これらの加減乗除の演算は、Knuth（1998）（２）のアルゴリズムに従って行われているが、

基本的には紙の上で行う筆算と同じものである。以下の説明では、TBigInt 型に合わせて、

基数ｂ（base、radix）を =72 128とするｂ進数表記で整数ｐを表わす。 

1280101
0

0
1

1 )()( uuuububup nbn
n

n LLL −−
−

− ==×++×=  

型 TBigIntは 



岡本安晴 2001.2.５;2001.8 

―13― 

type TBigInt = array[0..NBigInt-1] of byte; 

 

と宣言されていて、各 byte 型の要素で各 iu を表わす（図８）。 

 

var  a : TBigInt; 

 

のとき、a[NBigInt-1]が最上位桁 1−nu ,a[0]が最下位桁 0u を表わす。ただし、 

 

n = NBigInt 

である。 

  ２数、 12801 )( uuu n L−= と 12801 )( vvv n L−= 、の四則演算について説明する。 

 

加算のアルゴリズム 

12801 )( uuu n L−= と 12801 )( vvv n L−= の加算を次のように行う（Knuth,1998, Algorithm 

A）。ここで、和を 12801 )( www n L−= に求めるものとする（図１１）。 

 

図１１ 12801 ),,( uuu n L−= と 12801 ),,( vvv n L−= の足し算。

kは桁上がりの値を表わす。 
 

（A1） 0←j 、 0←k とおく。ここで、矢印←は代入を表わす。 jは現

在計算を行っている桁を表わし、ｋはキャリー（桁上がり）を表わす。

これらは初期値として０とおく。 

（A2） 128  mod  )( kvuw jjj ++= 、 

  128    )( divkvuk jj ++←  
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とおく。 

（A3） 1+← jj とおく。 

      nj < ならば、（A2）に戻る。 

      nj ≥ ならば、このアルゴリズムを終了する。アルゴリズムの終了後、

12801 )( www n L−= にはuと vの和が格納されている。 

 

関数 BigAdd は、上のアルゴリズムによって和を求めるものである。 

 

減算のアルゴリズム 

関数 BigSubでは、ａとｂの差をａと－ｂの和として求めている。 

負の数は、 1052 を法とする演算においては、最上位のビットが１のもので表わされる。し
たがって、－ｂはｂを表わすビットを反転（１は０、０は１にする）してから１を加える

ことによって得られる。 

ａと－ｂの和は、関数 BigAddによって求めている。 

 

乗算のアルゴリズム 

  ２数、 12801 )( uuu n L−= と 12801 )( vvv n L−= 、の積 128012 )( www n L−= は、以下の手順

で求めている（Knuth, 1998, Algorithm M）。 

 

（M1）まず、 0,,1 L−= nj に対して ;0←jw 、とおく。 

  次に、 0←j とおく。ｊは、vの j128 の位 jv による掛け算であること

を表わすものである。 

（M2） 0=jv ならば、 0←+njw とおき、（M6）に跳ぶ。 

（M3） 0←i 、 0←k とおく。ここで、iはuの i128 の位 iu との掛け算である

ことを表わし、ｋは桁上がりの数を表わすものである。これらは初期値

として０とおく。 

（M4） kwvut jiji ++×← + とおく。ここで、ｔは例えばWord型の変数とし

て、桁溢れがないようにする。 

           128  mod  tw ji ←+  

            128    divtk ←  
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      とおく（図１２）。 

（M5） 1+← ii とおく。 

       ni < ならば、（M4）に戻る。 

       ni ≥ ならば、 kw nj ←+ とおく。 

（M6） 1+← jj とおく。 

       nj < ならば、（M2）に戻る。 

       nj ≥ ならば、このアルゴリズムを終了する。アルゴリズムの終了後、

128012 )( www n L−= には、uとvの積が格納されている。 

 

関数 BigMulは、上のアルゴリズムによって積を求めるものである。 

 
図１２  12801 )( uuu n L−= と 12801 )( vvv n L−= の掛け算において、uの

i128 の位 iu と vの j128 の位 jv の積は vuw ×= の ji+128 の位 jiw + に加え

られる 

 

除算のアルゴリズム 

２数、 12801 )( uuu n L−= と 12801 )( vvv n L−= 、の商 12801 )( qqq n L−= および剰余

12801 )( rrr n L−= の算出（Knuth、1998、Algorithm Ｄ）においては、まず、uおよびvが

非負であるようにしてから商と剰余を求める。uあるいはvが負のときは、非負のとき
の商と剰余から負のときの商と剰余を求める。例えば、 0  ,0 >< vu のときは、 

 

rvqu +=−  

から 

)()( rqvu −+−=  
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として商 q− と剰余 r− を求める。 

  以下の説明では、uおよび vは非負であるとする。 
vu < のときは、 uvu +×= 0 となり、 urq ==   ,0 となる。 

vu ≥ の場合について考える。 

1,,1  ,0 L−== njv j のときは 0v で iu を順番に割っていけばよい。以下では、ある

0>j に対して 0≠jv である場合について考える。 

0>jv である最大の j を 1−n とおく。このとき、適当な整数ｍに対して、

1280 )( uuu nm L+= 、 12801 )( vvv n L−= と表わすことができる。 

筆算による割り算は、上の桁から計算していく（図１３）。 

 

O

L
LLL

                           

q0

001

m

mnmn

q
uuuvv +−

 

図１３  )()( 011280 vvuu nnm LL −+ ÷ の筆算 

 

 

最初の桁 mq の計算について考える。 

 

              128)()( 12801128 <÷ −+ vvuu nmnm LL                       （１） 

 

であるとする。この商が 128 以上のときは、被除数uの先頭に０を付け加えておく。す
なわち、 01 =++nmu 、 1+← mm として、 1280 )0( uu nm L+ を改めて 12801 )( uuu nmnm L−++ と

おくことによって商が 128 より小さくなるようにする。いま、q̂を次式によって定める。 

 

             { }1128  ,    )128(minˆ 11 −+×= −−++ nnmnm vdivuuq            （２） 

このとき、 

             12801128 )(    )( vvdivuuq nmnmm LL −+=  

とおくと 

                           mqq ≥ˆ                             （３） 

 

が成り立つ（Knuth,1998, p.271, Theorem A）。式（３）の証明は、附 Aに示した。 

さらに、 
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                    642    1281 =≥− divvn            （４） 

であれば、 

                         2ˆ +≤≤ mm qqq                    （５） 

 

となる（Knuth,1998, p.271, Theorem B）。式（５）の証明は附 Bに示した。 

  （５）式より、商 mq は q̂、 1ˆ −q 、 2ˆ −q の３つの値の１つに一致することがわかる。

mq を求めるときは、q̂を商 mq の最初の推定値とする。この推定値が商として大き過ぎ

るときは適切な値になるまで１つずつ減らしていく。この減らす手続きは、式（５）よ

り高々２回で済むことになる。商 mq の見当をつけるのに、被除数の上２桁と除数の上
１桁の商 q̂で行うのが式（２）である。５４３２１÷９８の最初の桁を５４÷９によっ

て見当をつけるということである。このとき、除数の上１桁の値が小さいと２桁目の値

の影響を受け易いので、基数の 1/2 より大きくしておくというのが（４）式の条件であ

る。 

 

641 <−nv  

 

のときは、次のように調整することによって（４）式が成り立つようにすることができ

る。 

  一般に、uを vで割ったときの商をq、剰余を rとおくと、 

 

rvqu +=  

 

が成り立つ。両辺にａをかけると、 

 

)()()( arqavau +=  

 

が成り立つ。すなわち、除数と被除数を定数倍しても、商は変わらない。このことより、

vが 64 より小さいときは、uと vを定数倍することにより（４）式（ 64≥v ）が成り立

つようにして、商を求めることができる。 

上のことを踏まえて、 1>n の場合の割り算を以下のように行う（Knuth,1998, 
Algorithm D）。 

  1280 )( uuu nm L+= を 12801 )( vvv n L−= で割ったときの商を 1280 )( qqq m L= 、剰余を

12801 )( rrr n L−= とおく。 

 

（Ｄ１）上の式（５）の説明での条件「 641 ≥−nv 」が成り立つように、

1280 )( uuu nm L+= と 12801 )( vvv n L−= の形を整えておく。uと vの
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定数倍に用いた定数をdとおく。 

（Ｄ２） mj ← とおく。ここで、 jは商の j128 の位 jq の計算であること

を表わすものである。 

（Ｄ３） }    )128{(ˆ 11 −−++ +×← nnjnj vdivuuq  

        }  mod  )128{(ˆ 11 −−++ +×← nnjnj vuur  

       とおく。 

（Ｄ３ａ） 128ˆ ≥q または 22 ˆ128ˆ −+− +×> njn urvq  

        ならば、 

          1ˆˆ −← qq 、 1ˆˆ −+← nvrr  

        とおく。 

条件「 128ˆ ≥q または 22 ˆ128ˆ −+− +×> njn urvq 」が成り

立たないときは、（Ｄ４）に進む。 

（Ｄ３ｂ）（Ｄ３ａ）に戻る。 

（Ｄ４） })(ˆ){()( 12801128128 vvquuuu njnjjnj LLL −++ ×−← とおく。 

（Ｄ５） qq j ˆ← とおく。 

       0)( 128 <+ jnj uu L のときは、（Ｄ６）に進む。 

       0)( 128 ≥+ jnj uu L のときは、（Ｄ７）に跳ぶ。 

（Ｄ６） 1−← jj qq  

       12801128128 )()()( vvuuuu njnjjnj LLL −++ +←  

     とおく。 

（Ｄ７） 1−← jj とおく。 

        0≥j ならば、（Ｄ３）に戻る。 

        0<j ならば、（Ｄ８）に進む。 

（Ｄ８） 1280 )( qqm L に商が求まっている。 

        剰余は、（Ｄ１）での定数d で割ったもの、 



岡本安晴 2001.2.５;2001.8 

―19― 

                 }     ){()( 0101 ddivuurr nn LL −− ←  

      として得ることができる。 

 

上のアルゴリズムによって商と剰余を求める手続きとして BigDivModを用意した。商を

求める関数 BigDiv、および剰余を求める関数 BigMod では、手続き BigDivMod を呼出し

ている。 

なお、上のアルゴリズムの（D3a）は、以下の性質に基づいている。 

いま、 

    1280112801128 )(0   ,)()( vvrrvvquu nnjnj LLL −−+ <≤+×=  

    rvquu nnjnj ˆˆ128 11 +=+× −−++  

とおく。ここで、 128ˆ <r  の制約はない。 

このとき、次の（Ａ）および（Ｂ）が成り立つ。 

（A） 22 ˆ128ˆ −+− +> njn urvq ならば、 qq ˆ<   (Knuth,1998, p.282,Exercise 19) 

（B） 22 ˆ128ˆ −+− +≤ njn urvq かつ 128ˆ <q ならば、 1ˆ +≤ qq   (Knuth,1998,p.282,Exercise 

20) 

性質（A）は、q̂が qより大きくなる場合の条件を示している。なお、（３）式より q̂はq

以上の数である。 

性質（B）は、 q̂とqの差が高々１である場合の条件を示している。この性質（B）はス

テップ（D3）で用いている。 

  なお、Knuth(1998)の Algorithm D（p.272）におけるステップ D3では、条件 128ˆ <r の

チェックが行われている。しかし、性質（Ｂ）が成り立つので、手続き BigDivMod では

128ˆ <r のチェックを省いている。 

 

 

四則演算のチェック 

プロジェクト PCalc.dpr は、上の四則演算の関数を用いて加減乗除の結果を表示するも

のである。実行時のフォームは図１４のようになっている。 
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図１４  四則演算の実行例 

 

それぞれ「ａ＝」と「ｂ＝」の下の Editコンポーネントのところに整数値を設定して、「Add」、

「Sub」、「Mul」、「Div」、「Mod」のボタンをクリックすると、ａとｂの和、差、積、商、

剰余が「Result」の下の Editコンポーネントに表示される。 
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附 A．式（３）の証明 

 

条件（１）のもとでは 

                         1128 −≤mq                        （A.1） 

が成り立つ。 

また、式（２）より 

1128ˆ −≤q  

が成り立つ。 

q̂の値の場合に分けて考える。 

1128ˆ −=q のときは、式（A.１）より次式 

 

mqq ≥ˆ  

 

すなわち（３）式が成り立つ。 

その他の場合、すなわち 

 

                         1128ˆ −<q                   （A.2） 

 

の場合について考える。 

式（２）と（A.2）より 








 +×
=

−

−++

1

1128
ˆ

n

nmnm

v
uu

q  

 

であることがわかる。ここで記号  [z] は、 zを超えない最大の整数値を表わす。 

したがって、 

11

1 1
1ˆ

128
ˆ

−−

−++ −+≤
+×

≤
nn

nmnm

v
q

v
uu

q  

 

が成り立つ。上式の右側の不等式より 

 

1ˆ128 111 −+≤+× −−−++ nnnmnm vvquu  

                  1128ˆ 111 +−+×≥ −−++− nnmnmn vuuvq                （A.3） 

となる。いま、 

128
)( )( mnm

m uuu L+=  
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とおくと、 

12801 )( vvv n L−=  

なので、 

12801
)()( )(ˆˆ vvquvqu n

mm L−⋅−=−  

                           )128(ˆ 0
1

1
)( vvqu n

n
m ++×−= −

− L  

                           1
1

)( 128ˆ −
− ×−≤ n

n
m vqu                  （A.4） 

となる。 

式（A.3）と（A.4）、および 128
)( )( mnm

m uuu L+= に注意して、 

    1
11

)()( 128)1128(ˆ −
−−++ ×+−+×−≤− n

nnmnm
mm vuuuvqu  

             
)128128128128(   

128128128
11

1
1

2
2

1
1

−−
−

−
+

−
−+

−
−++

+×−×+×−

++×+×+×=
nn

n
nn

nm

m
n

nm
n

nm
n

nm

vuu

uuuu L
 

             11
1

2
2 128128128 −−

−
−

−+ −×+++×= nn
nm

n
nm vuu L          

             1
1

12
2 128128128 −

−
−−

−+ ×+−++×= n
n

n
m

n
nm vuu L           （A.5） 

を得る。 
1128 −n は 128 進数のｎ桁目の位なので、128 進数表記において n-1 桁までで表わされる

数より大きい、すなわち 

                 m
n

nm
n uu ++×> −

−+
− L2

2
1 128128             （A.6） 

が成り立つ。 

式（A.5）と（A.6）より 

                1
1

)( 128ˆ −
− ×<− n

n
m vvqu  

                         0
2

2
1

1 128128 vvv n
n

n
n ++×+×≤ −

−
−

− L  

                            v=  

となる。すなわち、 

 

vqvvqu m )1ˆ(ˆ)( +=+<  
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となる。上式は、 )(mu を vで割ったときの商 mq が 1ˆ +q より小さいこと 

 

1ˆ +< qqm  

 

を表わしている。 mq と q̂は整数なので、上の不等式より 

 

qqm ˆ≤  

 

が導ける。上式は（３）式と同じ内容である。 
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附 B．式（５）の証明 

 

（３）式が成り立つので、（５）式が成り立つことを示すためには、（４）式の仮定 

 

641 ≥−nv  

のもとで、次式 

                               2ˆ +≤ mqq                              （B.1） 

 

が成り立つことを示せばよい。 

背理法で証明する。 

次式 

 

                               3ˆ +≥ mqq                              （B.2） 

 

が成り立つとする。 

（２）式より 

                 
1

1128
ˆ

−

−++ +×
≤

n

nmnm

v
uu

q  

                   1
1

1
1

128
128128

−
−

−
−++

×
×+×

= n
n

n
nm

n
nm

v
uu

 

                   1
1

2
2

1
1

128
128128128

−
−

−
−+

−
−++

×
++×+×+×

≤ n
n

m
n

nm
n

nm
n

nm

v
uuuu L

 

                   1
1

)(

128 −
− ×

= n
n

m

v
u

                                     （B.3） 

 

が導かれる。 )(mu は附.Ａで定義された 128
)( )( mnm

m uuu L+= のことである。 

  また、 

0
2

2
1

1 128128 vvvv n
n

n
n ++×+×= −

−
−

− L  

                        11
1 128128 −−

− +×< nn
nv    

すなわち、 

                         11
1 128128 −−

− −>× nn
n vv                        （B.４） 
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が成り立つ。 

  式（B.3）と（B.4）より 

                                  1

)(

128
ˆ

−−
< n

m

v
u

q                         （B.5） 

となる。 

また、 









=

v
u

q
m

m

)(

 

なので 

                                   1
)(

−>
v

u
q

m

m                         （B.6） 

となる。 

式（B.2）と（B.6）より 









−−<−≤ 1ˆˆ3

)(

v
u

qqq
m

m  

となる。上式と式（B.5）より 

                







−−

−
< − 1

128
3

)(

1

)(

v
u

v
u m

n

m

 

                  1
)128(

)128(
1

1)()(

+
−

−−
= −

−

vv
vuvu

n

nmm

 

                  1
128

128
1

1)(

+
−

⋅= −

−

n

nm

vv
u

 

すなわち、 

                1

1)(

128
128

13 −

−

−
⋅<− n

nm

vv
u

 

                1

1)(

128
128

2 −

−−
⋅> n

nm v
v

u
 

                     1

1
0

2
2

1
1

128
128128128

2 −

−−
−

−
− −++×+×

⋅= n

nn
n

n
n vvv L

 

                     1

11
1

128
128128

2 −

−−
− −×

⋅≥ n

nn
nv

 

                     )1(2 1 −= −nv                                       （B.7） 

となる。 
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式（２）より 

                     q̂1128 ≥−  

 

が成り立つので、 

                           3ˆ4128 −≥− q  

                                  mq≥                  （式（B.2）より） 

                                  







=

v
u m)(

 

                                  )]1(2[ 1 −≥ −nv          （式（B.7）より） 

                                  )1(2 1 −= −nv  

となる。上式より 

122128 −≥− nv  

                              11
2

128
−≥− nv  

すなわち 

                               64
2

128
1 =



<−nv  

となる。 

式（B.2）の仮定のもとで上式が導かれたので、逆に 

 

                   64
2

128
1 =



≥−nv  

であれば 

                                2ˆ +≤ mqq                             （B.1） 

が成り立つことになる。 
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