
岡本安晴 2001.2.５;2001.8

―1―

５．多重精度算術演算1

Delphi における整数型は、８ビット長のもの（Shortint、Byte）、１６ビット長のもの

（Shortint、Word）、３２ビット長のもの（Longint）がある。Delphi５ではさらに、３２

ビット長のものとして Longword、６４ビット長のものとして Int64が用意されている。こ

れらの整数型より桁数の多い整数を扱うときは、必要な桁数に対応した型を用意する必要

がある。用意した型のデータの処理・演算は、多重精度算術演算（１）、（２）と呼ばれているア

ルゴリズムによって行うことができる。多重精度算術演算を、ここでは２進数表記に対し

て行う。まず、有限桁数の２進数表記の演算について説明する。

２進数表記の演算

正整数９は２進数で表わすと

0123 012020219 ×+×+×+×=

となる。すなわち、

210 10019 =

と表わせる。数値の右下に付けられている１０や２の数は、それぞれ１０進数表記、２進

数表記であることを明記するためのものである。

整数３０は
01234 002121212130 ×+×+×+×+×=

と表わせる。すなわち、

210 1111030 =

と表わせる。

２進数４桁で０～１５の数が表わせる。２進数は４桁ずつ区切ることによって簡単に１

６進数表記に変換できる。 211110 を右から４桁ずつに区切ると、1と1110に分けられる（図

１）。

1 この解説は、TRY!PC,2000 年７月号「Delphi による数値計算プログラミングのすすめ：第５回

多重精度算術演算・方程式の根の計算」の原稿をもとにしたものです。

岡本安晴 2001.2.５;2001.8

―2―

図１ ２進数の１６進数への変換。Eは 16進数おいて１４を表わす。

1110は１０進数で 14248 =++ を表わすが、１４は１６進数では英字ｅまたはＥで表わす。

したがって、

16210 11111030 E==

と書ける。１６進数は、Delphiでは＄を付けて＄1Eと表わし、C++では先頭に 0xまたは

0Xを付けて 0X1Eと表わす。

コンピュータのメモリーは、８ビットを１バイトとして数える。１ビットは２進数の１

桁に対応する。４ビットで２進数４桁、すなわち１６進数１桁、を表わすので、１バイト

は１６進数で２桁を表わすことになる。

コンピュータにおいて、整数は、必要ならば左側に０を置くことにより、型によって決

まった桁数（ビット数）の２進数で表わされる。Shortint 型の場合は 1 バイトすなわち８

ビットで表わされるので、２進数で８桁までの数が表わされる。演算の結果が８桁を超え

たときは、その超えた桁はメモリーに保持されずに消える（３）。

例えば、

222 1000000000)00001000()01000000(=×

の場合、右辺は８桁を超える数なので０になる（図 2）。

図２ Shortint は８ビットなので、演算結果

が２進数で８桁を超えた部分は消える。

岡本安晴 2001.2.５;2001.8

―3―

２進数で８桁を超えた部分が消えてしまうということは、 82 を法とする演算を行うこと
と同じである。すなわち、

8

22 2 mod 0)00001000()0100000(≡×

ということである。

 82 を法とする演算では、

8

22 2 mod 0)11111111()00000001(≡+

となる。
82 を法とする演算、すなわち Shortint型での演算では、１に 2)11111111(を足すと０に

なる。したがって、 2)11111111(はー１と同じ働きをしている。Shortint 型では、最高位

の桁が１である数は、それとの加算を行ったとき０となる数の負の値を表わすとみなす。

２の負の数‐２は、

8

222 2 mod 0100000000)11111110()00000010(≡=+

となるので、 2)11111110(が‐２を表わす。

コンピュータでは、数値は２進数で表わされ、演算は２のべき乗を法とする演算になっ

ている。ｎビット（ｎ桁）の表記では、 n2 を法とする演算になる。負の数は、最高位の桁
が１のもので表わされる。

ｎ＝８の場合の n2 を法とする演算結果を確認するプロジェクトを PCkModular.dprとし

て用意した。このプロジェクトを実行すると、図３のようなフォームが表示される。

岡本安晴 2001.2.５;2001.8

―4―

ａの入力行

ｂの入力行

ａとｂの
演算結果

 図３ PCkModular.dpr の実行開始時のフォーム

上の行と中の行に２つの整数値を設定する。設定は、Byteと ShortIntの２つの欄のいずれ

かで行う。Binaryの表示の下の欄の Editコンポーネントは表示専用である。Byteの下の

欄は、８桁までの２進数を０～255の範囲で設定する。この範囲を超えたり、不適当な文字

が設定されると、範囲内の数値に適当に変換されたり、空白になったりする。Byte の欄に

値を設定すると、そのときの値に対応した２進数表記がBinaryの欄に表示される。ShortInt

の欄には、８桁目を符号ビットとみた符号付き整数としての値が表示される。例えば、Byte

欄に 255 を設定すると、ShortInt欄には－1が表示される。逆に、ShortInt 欄に－1を設

定すると、Byte欄には 255が表示される。

上段と中段にそれぞれ数値を設定してから、「Sum」あるいは「Mul」ボタンをクリック

すると、上段の数と中段の数の和、あるいは、積が算出されて下段に表示される。－１と

－128の和が図４に、積が図５に示されている。

岡本安晴 2001.2.５;2001.8

―5―

「Sum」のクリックで和の計算

図４ 82 を法とする和の計算

「Mul」のクリックで積の計算

図５ 82 を法とする積の計算

普通の１０進数での演算結果が８桁を超えるときは、このように普通の整数値の計算とは

異なった感じの結果になることがある。しかし、普通の１０進数での演算結果が８桁を超

えない場合、例えば－1と－２の計算の場合は、図６a、図６ｂのように ShortIntの欄の値

は普通の整数値の演算と同じ結果になっている。図６の場合、Byte 欄および Binary 欄に

岡本安晴 2001.2.５;2001.8

―6―

おける演算結果は 28を法とするものである。

図６ａ －１と－２の和

図６ｂ －１と－２の積

Knuth(1998)（２）の表記法

正整数ｐの２進数表記

 0
0

1
1

2
2

1
1 2222 ×+×++×+×= −

−
−

− uuuup n
n

n
n L

をここでは Knuth（1998）に従って

岡本安晴 2001.2.５;2001.8

―7―

20121)(uuuup nn L−−=

と表わす。Knuth(1981)の訳（1986）（１）では、添字は 221)(nuuu L というように昇順であ

るが、ここでは Knuth(1998)の方に従う。

正整数ｐがｂ進法で

0
0

1
1

2
2

1
1 bvbvbvbvp m

m
m

m ×+×++×+×= −
−

−
− L

と表わされるときは

bmm vvvvp)(0121 L−−=

と表わす。ｂは基数（baseまたは radix）という。

コンピュータでは、2進数４桁をまとめて、 1624 = を基数として整数を表わすことがあ
る。ここでは、プログラミングが簡単になるように、２進数７桁をまとめて、 12827 = を

基数とする。128 を基数とする１５桁の表記法は、２進数で 105157 =× 桁の数が扱える。
1052 は１０進数で３２桁の数なので、１２８を基数とする１５桁の表記法では、１０進数で
３２桁ぐらいまでの整数が扱えることになる。

 ｎビットの整数が１０進数による表記で何桁になるのかを求めるプロジェクトとして

PCheck.dprを用意した。プロジェクト PCheck.dpr を実行すると、図７のようなフォー

ムが表示される。

図７ ビット数から１０進数での桁数を求める

「ビット数」の右側の Edit コンポーネント内にビット数を設定して「Calc」ボタンを

クリックすると、「桁数」の右側に１０進数表記での桁数が表示される。

岡本安晴 2001.2.５;2001.8

―8―

多重精度整数型 TBigInt

多重精度算術演算のための型 TBigInt をユニットファイル UBigInt.pas に用意した。

TBigIntは、以下のように宣言されている。

type TBigInt = array[0..NBigInt-1] of byte;

 TBigInt型は、byte型を要素とする配列である。byte型の各要素の最上位のビット（MSB、

Most Significant Bit）はキャリービットとして使い、１byte中の下位７ビットで２進数の

各桁を表わす。したがって、byte型の各要素は、 12827 = 進数表記での各桁に対応する（図

８）。

図８ TBigInt 型の構成

ユニットファイルUBigInt.pasでは

const NBigInt = 15;

と宣言されているので、 105157 =× ビットの整数が扱える。105ビットの中で最上位ビッ

トは符号ビットとして使うので、 1042− から 12104 − までの整数値を表わすことができる。

プロジェクト PTable.dprは、TBigInt型を用いて多重精度の整数値の和を求めるもので

ある。整数値はグリッドのセルに設定する（図９）。

岡本安晴 2001.2.５;2001.8

―9―

左詰ボタン 右詰ボタン

図９ 和を求める整数値の設定

グリッドは、「追加」ボタンのクリックで行を追加することができる。データ設定用セルを

クリックしてから「追加」ボタンをクリックすると、クリックしておいたセル（アクティ

ブなセル）の下に行が追加される。不用なセルは、そのセルをクリックしてから「削除」

ボタンをクリックすると削除される。全てのデータ設定用セルに数値を設定した後、「計

算」ボタンをクリックすると、データの総和が下の Editコンポーネントに表示される（図

１０）。

岡本安晴 2001.2.５;2001.8

―10―

図 10 「計算」ボタンのクリックで和が求まる

「===>」ボタンをクリックすると、表示が右詰になる。左詰にするときは、「<===」ボタ

ンをクリックする。データの訂正のときは、左詰の方がやり易い。

ユニット UBigInt

多重精度演算のためのユニットファイル UBigInt.pas には、表１の関数が用意されてい

る。

岡本安晴 2001.2.５;2001.8

―11―

表１ ユニット UBigInt.pas に用意されている関数

 function BigAdd(a, b : TBigInt) : TBigInt;

ａとｂの和を関数値とする

function BigSub(a, b : TBigInt) : TBigInt;

ａとｂの差を関数値とする

function BigMul(a, b : TBigInt) : TBigInt;

ａとｂの積を関数値とする

function BigDiv(a, b : TBigInt) : TBigInt;

ａをｂで割った商を関数値とする

function BigMod(a, b : TBigINt) : TBigInt;

ａをｂで割った剰余を関数値とする

function StrToBig(s : string) : TBigInt;

文字列ｓの表わす整数値を TBigInt 型として返す

function BigToStr(a : TBigInt) : string;

ａの値を表わす整数値を（符号と）数字の文字列として返す。

岡本安晴 2001.2.５;2001.8

―12―

function BigToFloat(a : TBigInt) : Extended;

ａの表わす整数値を Extended 型として返す

function BigALB(a , b : TBigInt) : Boolean;

ａ＜ｂのときは True、それ以外のとき False を関数値とする

function BigALEB(a, b : TBigInt) : Boolean;

ａ≦ｂのときは True、それ以外のときは False を関数値とする

function BigAGB(a , b : TBigInt) : Boolean;

ａ＞ｂのときは True、それ以外のときは False を関数値とする

function BigAGEB(a, b : TBigInt) : Boolean;

ａ≧ｂのときは True、それ以外のときは False を関数値とする

function BigAEB(a, b : TBigInt) : Boolean;

ａ＝ｂのときは True、それ以外のときは False を関数値とする

これらの関数では、TBigInt型の整数の加減乗除の演算を基礎として処理が行われている。

これらの加減乗除の演算は、Knuth（1998）（２）のアルゴリズムに従って行われているが、

基本的には紙の上で行う筆算と同じものである。以下の説明では、TBigInt 型に合わせて、

基数ｂ（base、radix）を =72 128とするｂ進数表記で整数ｐを表わす。

1280101
0

0
1

1)()(uuuububup nbn
n

n LLL −−
−

− ==×++×=

型 TBigIntは

岡本安晴 2001.2.５;2001.8

―13―

type TBigInt = array[0..NBigInt-1] of byte;

と宣言されていて、各 byte 型の要素で各 iu を表わす（図８）。

var a : TBigInt;

のとき、a[NBigInt-1]が最上位桁 1−nu ,a[0]が最下位桁 0u を表わす。ただし、

n = NBigInt

である。

 ２数、 12801)(uuu n L−= と 12801)(vvv n L−= 、の四則演算について説明する。

加算のアルゴリズム

12801)(uuu n L−= と 12801)(vvv n L−= の加算を次のように行う（Knuth,1998, Algorithm

A）。ここで、和を 12801)(www n L−= に求めるものとする（図１１）。

図１１ 12801),,(uuu n L−= と 12801),,(vvv n L−= の足し算。

kは桁上がりの値を表わす。

（A1） 0←j 、 0←k とおく。ここで、矢印←は代入を表わす。 jは現

在計算を行っている桁を表わし、ｋはキャリー（桁上がり）を表わす。

これらは初期値として０とおく。

（A2） 128 mod)(kvuw jjj ++= 、

 128)(divkvuk jj ++←

岡本安晴 2001.2.５;2001.8

―14―

とおく。

（A3） 1+← jj とおく。

 nj < ならば、（A2）に戻る。

 nj ≥ ならば、このアルゴリズムを終了する。アルゴリズムの終了後、

12801)(www n L−= にはuと vの和が格納されている。

関数 BigAdd は、上のアルゴリズムによって和を求めるものである。

減算のアルゴリズム

関数 BigSubでは、ａとｂの差をａと－ｂの和として求めている。

負の数は、 1052 を法とする演算においては、最上位のビットが１のもので表わされる。し
たがって、－ｂはｂを表わすビットを反転（１は０、０は１にする）してから１を加える

ことによって得られる。

ａと－ｂの和は、関数 BigAddによって求めている。

乗算のアルゴリズム

 ２数、 12801)(uuu n L−= と 12801)(vvv n L−= 、の積 128012)(www n L−= は、以下の手順

で求めている（Knuth, 1998, Algorithm M）。

（M1）まず、 0,,1 L−= nj に対して ;0←jw 、とおく。

 次に、 0←j とおく。ｊは、vの j128 の位 jv による掛け算であること

を表わすものである。

（M2） 0=jv ならば、 0←+njw とおき、（M6）に跳ぶ。

（M3） 0←i 、 0←k とおく。ここで、iはuの i128 の位 iu との掛け算である

ことを表わし、ｋは桁上がりの数を表わすものである。これらは初期値

として０とおく。

（M4） kwvut jiji ++×← + とおく。ここで、ｔは例えばWord型の変数とし

て、桁溢れがないようにする。

 128 mod tw ji ←+

 128 divtk ←

岡本安晴 2001.2.５;2001.8

―15―

 とおく（図１２）。

（M5） 1+← ii とおく。

 ni < ならば、（M4）に戻る。

 ni ≥ ならば、 kw nj ←+ とおく。

（M6） 1+← jj とおく。

 nj < ならば、（M2）に戻る。

 nj ≥ ならば、このアルゴリズムを終了する。アルゴリズムの終了後、

128012)(www n L−= には、uとvの積が格納されている。

関数 BigMulは、上のアルゴリズムによって積を求めるものである。

図１２ 12801)(uuu n L−= と 12801)(vvv n L−= の掛け算において、uの

i128 の位 iu と vの j128 の位 jv の積は vuw ×= の ji+128 の位 jiw + に加え

られる

除算のアルゴリズム

２数、 12801)(uuu n L−= と 12801)(vvv n L−= 、の商 12801)(qqq n L−= および剰余

12801)(rrr n L−= の算出（Knuth、1998、Algorithm Ｄ）においては、まず、uおよびvが

非負であるようにしてから商と剰余を求める。uあるいはvが負のときは、非負のとき
の商と剰余から負のときの商と剰余を求める。例えば、 0 ,0 >< vu のときは、

rvqu +=−

から

)()(rqvu −+−=

岡本安晴 2001.2.５;2001.8

―16―

として商 q− と剰余 r− を求める。

 以下の説明では、uおよび vは非負であるとする。
vu < のときは、 uvu +×= 0 となり、 urq == ,0 となる。

vu ≥ の場合について考える。

1,,1 ,0 L−== njv j のときは 0v で iu を順番に割っていけばよい。以下では、ある

0>j に対して 0≠jv である場合について考える。

0>jv である最大の j を 1−n とおく。このとき、適当な整数ｍに対して、

1280)(uuu nm L+= 、 12801)(vvv n L−= と表わすことができる。

筆算による割り算は、上の桁から計算していく（図１３）。

O

L
LLL

q0

001

m

mnmn

q
uuuvv +−

図１３)()(011280 vvuu nnm LL −+ ÷ の筆算

最初の桁 mq の計算について考える。

 128)()(12801128 <÷ −+ vvuu nmnm LL （１）

であるとする。この商が 128 以上のときは、被除数uの先頭に０を付け加えておく。す
なわち、 01 =++nmu 、 1+← mm として、 1280)0(uu nm L+ を改めて 12801)(uuu nmnm L−++ と

おくことによって商が 128 より小さくなるようにする。いま、q̂を次式によって定める。

 { }1128 ,)128(minˆ 11 −+×= −−++ nnmnm vdivuuq （２）

このとき、

 12801128)()(vvdivuuq nmnmm LL −+=

とおくと

 mqq ≥ˆ （３）

が成り立つ（Knuth,1998, p.271, Theorem A）。式（３）の証明は、附 Aに示した。

さらに、

岡本安晴 2001.2.５;2001.8

―17―

 642 1281 =≥− divvn （４）

であれば、

 2ˆ +≤≤ mm qqq （５）

となる（Knuth,1998, p.271, Theorem B）。式（５）の証明は附 Bに示した。

 （５）式より、商 mq は q̂、 1ˆ −q 、 2ˆ −q の３つの値の１つに一致することがわかる。

mq を求めるときは、q̂を商 mq の最初の推定値とする。この推定値が商として大き過ぎ

るときは適切な値になるまで１つずつ減らしていく。この減らす手続きは、式（５）よ

り高々２回で済むことになる。商 mq の見当をつけるのに、被除数の上２桁と除数の上
１桁の商 q̂で行うのが式（２）である。５４３２１÷９８の最初の桁を５４÷９によっ

て見当をつけるということである。このとき、除数の上１桁の値が小さいと２桁目の値

の影響を受け易いので、基数の 1/2 より大きくしておくというのが（４）式の条件であ

る。

641 <−nv

のときは、次のように調整することによって（４）式が成り立つようにすることができ

る。

 一般に、uを vで割ったときの商をq、剰余を rとおくと、

rvqu +=

が成り立つ。両辺にａをかけると、

)()()(arqavau +=

が成り立つ。すなわち、除数と被除数を定数倍しても、商は変わらない。このことより、

vが 64 より小さいときは、uと vを定数倍することにより（４）式（ 64≥v ）が成り立

つようにして、商を求めることができる。

上のことを踏まえて、 1>n の場合の割り算を以下のように行う（Knuth,1998,
Algorithm D）。

 1280)(uuu nm L+= を 12801)(vvv n L−= で割ったときの商を 1280)(qqq m L= 、剰余を

12801)(rrr n L−= とおく。

（Ｄ１）上の式（５）の説明での条件「 641 ≥−nv 」が成り立つように、

1280)(uuu nm L+= と 12801)(vvv n L−= の形を整えておく。uと vの

岡本安晴 2001.2.５;2001.8

―18―

定数倍に用いた定数をdとおく。

（Ｄ２） mj ← とおく。ここで、 jは商の j128 の位 jq の計算であること

を表わすものである。

（Ｄ３） })128{(ˆ 11 −−++ +×← nnjnj vdivuuq

 } mod)128{(ˆ 11 −−++ +×← nnjnj vuur

 とおく。

（Ｄ３ａ） 128ˆ ≥q または 22 ˆ128ˆ −+− +×> njn urvq

 ならば、

 1ˆˆ −← qq 、 1ˆˆ −+← nvrr

 とおく。

条件「 128ˆ ≥q または 22 ˆ128ˆ −+− +×> njn urvq 」が成り

立たないときは、（Ｄ４）に進む。

（Ｄ３ｂ）（Ｄ３ａ）に戻る。

（Ｄ４） })(ˆ){()(12801128128 vvquuuu njnjjnj LLL −++ ×−← とおく。

（Ｄ５） qq j ˆ← とおく。

 0)(128 <+ jnj uu L のときは、（Ｄ６）に進む。

 0)(128 ≥+ jnj uu L のときは、（Ｄ７）に跳ぶ。

（Ｄ６） 1−← jj qq

 12801128128)()()(vvuuuu njnjjnj LLL −++ +←

 とおく。

（Ｄ７） 1−← jj とおく。

 0≥j ならば、（Ｄ３）に戻る。

 0<j ならば、（Ｄ８）に進む。

（Ｄ８） 1280)(qqm L に商が求まっている。

 剰余は、（Ｄ１）での定数d で割ったもの、

岡本安晴 2001.2.５;2001.8

―19―

 }){()(0101 ddivuurr nn LL −− ←

 として得ることができる。

上のアルゴリズムによって商と剰余を求める手続きとして BigDivModを用意した。商を

求める関数 BigDiv、および剰余を求める関数 BigMod では、手続き BigDivMod を呼出し

ている。

なお、上のアルゴリズムの（D3a）は、以下の性質に基づいている。

いま、

 1280112801128)(0 ,)()(vvrrvvquu nnjnj LLL −−+ <≤+×=

 rvquu nnjnj ˆˆ128 11 +=+× −−++

とおく。ここで、 128ˆ <r の制約はない。

このとき、次の（Ａ）および（Ｂ）が成り立つ。

（A） 22 ˆ128ˆ −+− +> njn urvq ならば、 qq ˆ< (Knuth,1998, p.282,Exercise 19)

（B） 22 ˆ128ˆ −+− +≤ njn urvq かつ 128ˆ <q ならば、 1ˆ +≤ qq (Knuth,1998,p.282,Exercise

20)

性質（A）は、q̂が qより大きくなる場合の条件を示している。なお、（３）式より q̂はq

以上の数である。

性質（B）は、 q̂とqの差が高々１である場合の条件を示している。この性質（B）はス

テップ（D3）で用いている。

 なお、Knuth(1998)の Algorithm D（p.272）におけるステップ D3では、条件 128ˆ <r の

チェックが行われている。しかし、性質（Ｂ）が成り立つので、手続き BigDivMod では

128ˆ <r のチェックを省いている。

四則演算のチェック

プロジェクト PCalc.dpr は、上の四則演算の関数を用いて加減乗除の結果を表示するも

のである。実行時のフォームは図１４のようになっている。

岡本安晴 2001.2.５;2001.8

―20―

図１４ 四則演算の実行例

それぞれ「ａ＝」と「ｂ＝」の下の Editコンポーネントのところに整数値を設定して、「Add」、

「Sub」、「Mul」、「Div」、「Mod」のボタンをクリックすると、ａとｂの和、差、積、商、

剰余が「Result」の下の Editコンポーネントに表示される。

岡本安晴 2001.2.５;2001.8

―21―

附 A．式（３）の証明

条件（１）のもとでは

 1128 −≤mq （A.1）

が成り立つ。

また、式（２）より

1128ˆ −≤q

が成り立つ。

q̂の値の場合に分けて考える。

1128ˆ −=q のときは、式（A.１）より次式

mqq ≥ˆ

すなわち（３）式が成り立つ。

その他の場合、すなわち

 1128ˆ −<q （A.2）

の場合について考える。

式（２）と（A.2）より








 +×
=

−

−++

1

1128
ˆ

n

nmnm

v
uu

q

であることがわかる。ここで記号 [z] は、 zを超えない最大の整数値を表わす。

したがって、

11

1 1
1ˆ

128
ˆ

−−

−++ −+≤
+×

≤
nn

nmnm

v
q

v
uu

q

が成り立つ。上式の右側の不等式より

1ˆ128 111 −+≤+× −−−++ nnnmnm vvquu

 1128ˆ 111 +−+×≥ −−++− nnmnmn vuuvq （A.3）

となる。いま、

128
)()(mnm

m uuu L+=

岡本安晴 2001.2.５;2001.8

―22―

とおくと、

12801)(vvv n L−=

なので、

12801
)()()(ˆˆ vvquvqu n

mm L−⋅−=−

)128(ˆ 0
1

1
)(vvqu n

n
m ++×−= −

− L

 1
1

)(128ˆ −
− ×−≤ n

n
m vqu （A.4）

となる。

式（A.3）と（A.4）、および 128
)()(mnm

m uuu L+= に注意して、

 1
11

)()(128)1128(ˆ −
−−++ ×+−+×−≤− n

nnmnm
mm vuuuvqu

)128128128128(

128128128
11

1
1

2
2

1
1

−−
−

−
+

−
−+

−
−++

+×−×+×−

++×+×+×=
nn

n
nn

nm

m
n

nm
n

nm
n

nm

vuu

uuuu L

 11
1

2
2 128128128 −−

−
−

−+ −×+++×= nn
nm

n
nm vuu L

 1
1

12
2 128128128 −

−
−−

−+ ×+−++×= n
n

n
m

n
nm vuu L （A.5）

を得る。
1128 −n は 128 進数のｎ桁目の位なので、128 進数表記において n-1 桁までで表わされる

数より大きい、すなわち

 m
n

nm
n uu ++×> −

−+
− L2

2
1 128128 （A.6）

が成り立つ。

式（A.5）と（A.6）より

 1
1

)(128ˆ −
− ×<− n

n
m vvqu

 0
2

2
1

1 128128 vvv n
n

n
n ++×+×≤ −

−
−

− L

 v=

となる。すなわち、

vqvvqu m)1ˆ(ˆ)(+=+<

岡本安晴 2001.2.５;2001.8

―23―

となる。上式は、)(mu を vで割ったときの商 mq が 1ˆ +q より小さいこと

1ˆ +< qqm

を表わしている。 mq と q̂は整数なので、上の不等式より

qqm ˆ≤

が導ける。上式は（３）式と同じ内容である。

岡本安晴 2001.2.５;2001.8

―24―

附 B．式（５）の証明

（３）式が成り立つので、（５）式が成り立つことを示すためには、（４）式の仮定

641 ≥−nv

のもとで、次式

 2ˆ +≤ mqq （B.1）

が成り立つことを示せばよい。

背理法で証明する。

次式

 3ˆ +≥ mqq （B.2）

が成り立つとする。

（２）式より

1

1128
ˆ

−

−++ +×
≤

n

nmnm

v
uu

q

 1
1

1
1

128
128128

−
−

−
−++

×
×+×

= n
n

n
nm

n
nm

v
uu

 1
1

2
2

1
1

128
128128128

−
−

−
−+

−
−++

×
++×+×+×

≤ n
n

m
n

nm
n

nm
n

nm

v
uuuu L

 1
1

)(

128 −
− ×

= n
n

m

v
u

 （B.3）

が導かれる。)(mu は附.Ａで定義された 128
)()(mnm

m uuu L+= のことである。

 また、

0
2

2
1

1 128128 vvvv n
n

n
n ++×+×= −

−
−

− L

 11
1 128128 −−

− +×< nn
nv

すなわち、

 11
1 128128 −−

− −>× nn
n vv （B.４）

岡本安晴 2001.2.５;2001.8

―25―

が成り立つ。

 式（B.3）と（B.4）より

 1

)(

128
ˆ

−−
< n

m

v
u

q （B.5）

となる。

また、









=

v
u

q
m

m

)(

なので

 1
)(

−>
v

u
q

m

m （B.6）

となる。

式（B.2）と（B.6）より









−−<−≤ 1ˆˆ3

)(

v
u

qqq
m

m

となる。上式と式（B.5）より

 







−−

−
< − 1

128
3

)(

1

)(

v
u

v
u m

n

m

 1
)128(

)128(
1

1)()(

+
−

−−
= −

−

vv
vuvu

n

nmm

 1
128

128
1

1)(

+
−

⋅= −

−

n

nm

vv
u

すなわち、

 1

1)(

128
128

13 −

−

−
⋅<− n

nm

vv
u

 1

1)(

128
128

2 −

−−
⋅> n

nm v
v

u

 1

1
0

2
2

1
1

128
128128128

2 −

−−
−

−
− −++×+×

⋅= n

nn
n

n
n vvv L

 1

11
1

128
128128

2 −

−−
− −×

⋅≥ n

nn
nv

)1(2 1 −= −nv （B.7）

となる。

岡本安晴 2001.2.５;2001.8

―26―

式（２）より

 q̂1128 ≥−

が成り立つので、

 3ˆ4128 −≥− q

 mq≥ （式（B.2）より）

 







=

v
u m)(

)]1(2[1 −≥ −nv （式（B.7）より）

)1(2 1 −= −nv

となる。上式より

122128 −≥− nv

 11
2

128
−≥− nv

すなわち

 64
2

128
1 =



<−nv

となる。

式（B.2）の仮定のもとで上式が導かれたので、逆に

 64
2

128
1 =



≥−nv

であれば

 2ˆ +≤ mqq （B.1）

が成り立つことになる。

岡本安晴 2001.2.５;2001.8

―27―

参 考 文 献

（１）D.E.Knuth（著）・中川圭介（訳）「準数値算法／算術演算： The art of computer

 programming, 第４分冊」、Pp.536、サイエンス社、1986．

（２）D.E.Knuth. Seminumerical algorithms: The art of computer programming,

 Vol.2, third edition. Pp.762, Addison-Wesley, 1998.

（３）岡本安晴「Delphiプログラミング入門」、Pp.207,CQ出版株式会社、1997.

