
岡本安晴 2001.1.29；2001.7

―1―

常微分方程式1

オイラー法

 関数が微分方程式

),(ytf
dt
dy

=

の形で与えられているとする。

微分を差分の形で近似すると

),(ytf
t
y

≈
∆
∆

となる。

 yyy ii ∆+=+1

とおくと、

),(1 iiii ytftyy ⋅∆+≈+ （１）

となる。

0tt = における値が初期値 0y として与えられているとき、（１）式によって関数値 1y 、

2y 、・・・を求める方法はオイラー法と呼ばれている１）。

（１）式において、 itt = 、 iyy = 、 th ∆= 、 tttt ii ∆+== +11 、 11 += iyy とおいたもの、

すなわちｔとｙの値が与えられているとき、 th ∆= 後の値 t1と y1 をオイラー法によって

求める手続き Eulerは次のようになる。

 procedure Euler(h, t, y : Extended;

 f : TFDiff;

 var t1, y1 : Extended);

 begin

 y1:=y+h*f(t,y);

 t1:=t+h;

 end; { Euler }

オイラー法を手続き Euler として表したが、処理速度を優先するときは手続きとしてま

とめず、プログラム中に直接組み込む。手続きとして表すと、手続き呼び出しの処理で余

分な時間が掛かる。

1 本解説は、TRY！PC、2000 年５月号「Delphi による数値計算プログラミングのすすめ：第３回

常微分方程式」の原稿をもとにしたものである。

岡本安晴 2001.1.29；2001.7

―2―

手続き Eulerを使った簡単な例でオイラー法の精度を見てみる。

微分方程式

 t
dt
dy

sin−= （２）

の解は

 ty cos=

で与えられる。

いま、

 tx sin=

とおくと、点)cos,(sin),(ttyx = の軌跡は円になる。ｔの値 LL ,,,0 itt におけるｙの値を

常微分方程式（２）に対してオイラー法を適用して求め、点),(sin ii yt と円を比べるとビジ

ュアルにオイラー法の性能を見ることができる。

増分 時間間隔
スタート
位置

ここまで描
かれている

図１ オイラー法による解の描画

図１は PEuler.dprというプログラムを実行したときのものである。このプログラムでは

岡本安晴 2001.1.29；2001.7

―3―

 t:=t1; y:=y1;

 Euler(d, t, y, FDiff, t1, y1);

 ix1:=XPos(sin(t1)); iy1:=YPos(y1);

 Pen.Color:=clRed;

 LineTo(ix1,iy1);

という形で手続き Eulerが呼出され、点),(sin ii yt の軌跡が点(ix1,iy1)を結ぶ線分として描

かれている。黒の線が Euler 法による解の軌跡を表わし、最も新しい線分は赤で描かれて

いる。円は緑の曲線で表わされている。

 微分方程式（２）式における関数 tytf sin),(−= は、関数宣言

 function FDiff(t, y : Extended) : Extended;

 begin

 FDiff:=-sin(t);

 end;

によって関数 FDiffとして与えられている。

図２ UEiler.pas のフォーム

PEuler.dprのユニット UEuler.pas のフォームは図２のように用意されていて、Timer1

コンポーネントによってオイラー法による解の計算の時間間隔をコントロールしている。

GOボタンをクリックすると、時間として設定された間隔で OnTimerイベントが生起し、

オイラー法によって増分 t∆ 後の関数値が求められている。増分は手続き Eulerの第１パラ

メータｈの実パラメータとして設定する。手続き Euler によって求められた最新の関数値

岡本安晴 2001.1.29；2001.7

―4―

による線分、点),(ii yx と点),(11 ++ ii yx を結んだもの、は、赤い線分で示される。

プログラム PEuler.dprは、difffilesフォルダにある。自己解凍型ファイル difffiles.EXE

をダウンロードして実行すると解凍されてフォルダ difffilesが作成される。

 手続き Euler はユニット UDiffEq.pasに宣言されている。このユニットはフォームを持

たないユニットである。フォームなしユニットの作り方は拙著２）、３）などに説明されている。

PEuler.dprを増分の値 0.01で実行すると図１のようになる。かなりよい結果といえそう

である。

増分を 0.1として実行すると図３のようになる。円からのずれが目立つ。

同じ増分に対してオイラー法より精度を上げる方法が工夫されている。

図３ 増分が 0.1 のときの解

Midpoint method

オイラー法、（１）式、では、 itt = における微分係数),(ii ytf を用いて ttt ii ∆+=+1 にお

ける関数値 1+iy を求めている。オイラー法の精度を高めるために、 it と 1+it の中点での微分

係数を用いるものがある。この方法はMidpoint method４）と呼ばれている。

この方法では、中点 tt i ∆+
2
1
における微分係数を推定するために、まず中点での yの値

を),(
2
1

iii ytfty ⋅∆+ で推定する。この推定値を用いて中点における微分係数を

岡本安晴 2001.1.29；2001.7

―5―

 





 ⋅∆+∆+),(

2
1

,
2
1

iiii ytftyttf

と求め、 ttt ii ∆+=+1 における関数値 1+iy を

 





 ⋅∆+∆+⋅∆+=+),(

2
1

,
2
1

1 iiiiii ytftyttftyy

とおく。

Midpoint methodと同じ考え方の方法に「かえる跳び法」５）と呼ばれているものがある。

この方法は Feynman の物理学の教科書６）でも説明されているが、関数値を求める関数が

２グループに分かれていて、一方のグループの中点での微分係数の値が他グループの関数

によって与えられているという形になっている。拙著「Delphiプログラミング入門」７）で

も２物体の運動のシミュレーションで「かえる跳び法」を用いている。

Midpoint methodはルンゲ・クッタ（Runge－Kutta）法と呼ばれている方法の特別なも

のですが、Midpoint methodより性能のよい４次のルンゲ・クッタ法について次に説明し

ます。

ルンゲ・クッタ法（４次）

Midpoint methodでは、 ii ttt −=∆ +1 の間の増分を中点での微分係数によって計算するこ

とにより精度の向上が図られている。（４次の）ルンゲ･クッタ法では、３点、it 、 2/tt i ∆+ 、

ttt ii ∆+=+1 、の微分係数を用いて増分を４種類の方法で求め、それら４つの増分、 1k 、 2k 、

3k 、 4k 、の加重平均として ii yyy −=∆ +1 を求めている８）。

この方法では、まずオイラー法で１つ求め、 1k とする。

),(1 ii ytftk ⋅∆=

２番目の増分の推定値 2k は、中点での微分係数を用いて計算する。微分係数),(ytf を与

える関数における中点 2/tt i ∆+ での yの推定値を、上の y∆ の推定値 1k を用いて +iy
=∆ 2/y 2/1kyi + とおき、

)2/,2/(12 kyttftk ii +∆+⋅∆=

とする。

３番目の推定値 3k は、 2k と同じく中点の微分係数を用いて計算するが、中点での yの推
定値は 2k を用いて 2/2kyi + とする。したがって、

)2/,2/(23 kyttftk ii +∆+⋅∆=

となる。

最後の４番目の推定値 4k は、 ttt ii ∆+=+1 での微分係数を用いて求める。微分係数

),(ytf の 1+it に対する yの値は 3k を用いて 3kyi + とおき、

),(34 kyttftk ii +∆+⋅∆=

とする。

最終的な yの増分 ii yyy −=∆ +1 は、以上の 4つの増分、 1k 、 2k 、 3k 、 4k 、を１：２：

岡本安晴 2001.1.29；2001.7

―6―

２：１の比で加重平均したものとする。すなわち、

 6/)22(4321 kkkky +++=∆

とおく。

オイラー法の精度は)(tO ∆ と推定されているが、４次のルンゲ・クッタ法の精度は yが

５回連続微分可能であるならば))((4tO ∆ となる４）。

ルンゲ・クッタ法の手順をまとめると次のようになる。

（１）),(1 ii ytftk ⋅∆= とおく。

（２）)2/,2/(12 kyttftk ii +∆+⋅∆= とおく。

（３）)2/,2/(23 kyttftk ii +∆+⋅∆= とおく。

（４）),(34 kyttftk ii +∆+⋅∆= とおく。

（５）次式により 1+iy と 1+it を与える。

 6/)22(43211 kkkkyy ii ++++=+

 ttt ii ∆+=+1

 上の手順を、オイラー法の場合と同じように、手続き Runge_Kuttaとして表わすと次の

ようになる。

 procedure Runge_Kutta(h, t, y : Extended;
 f : TFDiff;
 var t1, y1 : Extended);
 var k1, k2, k3, k4 : Extended;
 begin
 k1:=h*f(t,y);
 k2:=h*f(t+0.5*h, y+0.5*k1);
 k3:=h*f(t+0.5*h, y+0.5*k2);
 k4:=h*f(t+h, y+k3);

 y1:=y+(k1+2*k2+2*k3+k4)/6;
 t1:=t+h;

 end; { Runge_Kutta }

プログラム PRK.dprは、オイラー法を用いたプログラム PEuler.dprをルンゲ・クッタ

法を用いたものに書き改めたものである。手続き Eulerが Runge_Kuttaに置き換えられて

いる。オイラー法による増分が 0.1のときの解（図３）と比べると、同じ増分であるがよい

結果が得られている（図４）。

増分を１として実行したときも良い結果が得られている（図５）。図５において、緑色の

曲線で円があらわされ、ルンゲ・クッタ法による解の軌跡は黒の線分の端点で表わされて

いる。

岡本安晴 2001.1.29；2001.7

―7―

図４ ルンゲ・クッタ法を用いた場合

(ti,yi)

(ti+1,yi+1)

図５ 増分を１としたときのルンゲ・クッタ法の解

岡本安晴 2001.1.29；2001.7

―8―

OnTimerイベントの生起による最新の解の軌跡は赤い線分で表わされている。増分 t∆ の値
が大きいので軌跡を描いている線分の長さが長くなっているが、解に対応している線分の

端点は円周上にある。

ルンゲ･クッタ法の使用例のプロジェクト PRK.dprもフォルダ difffilesにある。

連立常微分方程式

微分方程式が次の連立方程式

),,,(11
1

nyytf
dt
dy

L=

 ・

 ・

 ・

),,,(1 nn
n yytf

dt
dy

L=

で与えられているときのルンゲ・クッタ法は次のようになる４）。

まず、オイラー法で増分を求める。 jy に対するオイラー法による増分 jK ,1 は次式で与え

られる。

),,,(,,1,1 iniijj yytftK L⋅∆=

次に、 jK ,1 を用いて、各 jy の it と ttt ii ∆+=+1 の間の中点における値を 2/,1, jij Ky + と

推定して、中点における微分係数を

)2/,,2/,2/(,1,1,1,1 niniij KyKyttf ++∆+ L

で推定する。この中点における微分係数の推定値を用いて jy 増分を推定したものを jK ,2 と

おく。

)2/,,2/,2/(,1,1,1,1,2 niniijj KyKyttftK ++∆+⋅∆= L

となる。

上の中点における微分係数を用いて増分を求める方法を、 jK ,1 の代わりに jK ,2 を用いて

行ったときの増分の推定値を jK ,3 とおく。

岡本安晴 2001.1.29；2001.7

―9―

)2/,,2/,2/(,2,1,2,1,3 niniijj KyKyttftK ++∆+⋅∆= L

となる。

増分の４番目の推定値 jK ,4 は、における微分係数の推定値を用いて算出する。微分係数

を与える関数),,,(1 nk yytf L における各 jy の tt i ∆+ における値を jij Ky ,3, + で与えて、４

番目の増分の推定値 jK ,4 を

),,,(,3,1,3,1,4 niniijj KyKyttftK ++∆+⋅∆= L

とする。

これら 4つの推定値、 jK ,1 、 jK ,2 、 jK ,3 、 jK ,4 、を１：２：２：１の重みで加重平均し

たもので jy の増分 ijijj yyy ,1, −=∆ + を与える。すなわち、

 6/)22(,4,3,2,1,1, jjjjijij KKKKyy ++++=+

とする。

上の手順をまとめると以下のようになる。

（１） njyytftK iniijj ,,1);,,,(,,1,1 LL =⋅∆= 、とおく。

（２） njKyKyttftK niniijj ,,1);2/,,2/,2/(,1,1,1,1,2 LL =++∆+⋅∆= 、と

おく。

（３） njKyKyttftK niniijj ,,1);2/,,2/,2/(,2,1,2,1,3 LL =++∆+⋅∆= 、と

おく。

（４） njKyKyttftK niniijj ,,1);,,,(,3,1,3,1,4 LL =++∆+⋅∆= 、とおく。

（５） jK ,1 、・・・、 jK ,4 の値から 1,1 +iy 、・・・、 1, +iny を次式により与える。

 6/)22(,4,3,2,1,1, jjjjijij KKKKyy ++++=+

上の連立常微分方程式に対するルンゲ・クッタ法の手順を RungeKuttaSystem手続きと

してまとめた。この手続きはユニット USystemRK.pasに宣言されている（リスト１）。

岡本安晴 2001.1.29；2001.7

―10―

リスト１ 連立常微分方程式に対するルンゲ・クッタ法

unit USystemRK; // 連立常微分方程式に対するルンゲ・クッタ法
 // R.L.Burden & J.D.Faires (1985)
 // Numerical Analysis, 3rd ed., Algorithm 5.7
interface

uses UTypeDefRK;

procedure RungeKuttaSystem(t, h : Extended;
 y : TVectorRK;
 f : TFuncRK;
 m : integer;
 var t1 : Extended;
 var y1 : TVectorRK);

implementation

procedure RungeKuttaSystem(t, h : Extended;
 y : TVectorRK;
 f : TFuncRK;
 m : integer;
 var t1 : Extended;
 var y1 : TVectorRK);
 var y0, v, k1, k2, k3, k4 : TVectorRK;
 i : integer;
 begin
 v:=f(t, y);
 for i:=1 to m do
 k1[i]:=h*v[i];

 for i:=1 to m do
 y0[i]:=y[i]+k1[i]*0.5;
 v:=f(t+h*0.5, y0);
 for i:=1 to m do
 k2[i]:=h*v[i];

 for i:=1 to m do
 y0[i]:=y[i]+k2[i]*0.5;
 v:=f(t+h*0.5, y0);
 for i:=1 to m do
 k3[i]:=h*v[i];

岡本安晴 2001.1.29；2001.7

―11―

 for i:=1 to m do
 y0[i]:=y[i]+k3[i];
 v:=f(t+h, y0);
 for i:=1 to m do
 k4[i]:=h*v[i];

 for i:=1 to m do
 y1[i]:=y[i]+(k1[i]+2*k2[i]+2*k3[i]+k4[i])/6;

 t1:=t+h;
 end; { RungeKuttaSystem }

end.

手続き RungeKuttaSystemの頭部は次のようになっている。

 procedure RungeKuttaSystem(t, h : Extended;

 y : TVectorRK;

 f : TFuncRK;

 m : integer;

 var t1 : Extended;

 var y1 : TVectorRK);

手続き RungeKuttaSystemを呼び出すときは、第１，第２パラメータｔとｈに it と t∆ を

設定する。第３パラメータの配列ｙの要素には iy ,1 、・・・、 iny , の値を設定する。第４パ

ラメータの関数ｆは連立微分方程式の関数),,,(1 nj yytf L を指定するもので、関数値の型

は TVectorRKという配列型である。配列のｊ番目の要素が、ｊ番目の関数),,,(1 nj yytf L

の値を表わす。

これらの配列や関数をパラメータとするための型はユニットUTypeDefRKで宣言してお

く（リスト２）。ユニットUSystemRKのuses節でUTypeDefRKの使用が宣言されている。

岡本安晴 2001.1.29；2001.7

―12―

リスト２ ユニットUSystemRK.pasおよびUDiffEqSysObj.pasで用いら

れている型の宣言のためのユニット

unit UTypeDefRK;

interface

const MaxNFunc = 10;

type TVectorRK = array[1..MaxNFunc] of Extended;
 TFuncRK = function(t : Extended;
 y : TVectorRK) : TVectorRK;

implementation

end.

ユニットUTypeDefRKにおいて、型 TFuncRKは

 TFuncRK = function(t : Extended;
 y : TVectorRK) : TVectorRK;

と宣言されている。これは nyytf nj ,,1j);,,,(1 LL = に対応した形になっている。

手続き RungeKuttaSystemの第５パラメータｍには 1y 、・・・、 ny の総数ｎを設定する。

ｎは配列 TVectorRKの大きさMaxNFunc以下の値でなければならない。

以上の設定で手続き RungeKuttaSystemを呼出すと、ルンゲ・クッタ法が実行されて 1+it

の値が第６パラメータ t1に、 1,1 +iy 、・・・、 1, +iny の値が第７パラメータである配列 y1に

返される。

手続き RungeKuttaSystemを使用したプログラム例がプロジェクト PRKSystem.dprで

ある。

このプログラムでは、

 ty sin1 =

 ty cos2 =

に対する連立常微分方程式

岡本安晴 2001.1.29；2001.7

―13―

 2
1 y

dt
dy

=

 1
2 y

dt
dy

−=

の解を求めています。点)cos,(sin),(21 ttyy = の軌跡は円を描くので、この円とルンゲ・

クッタ法によって求めた解),(,2,1 ii yy の軌跡を比較することにより解の精度を見ることが

できる。

手続き RungeKuttaSystemの第４パラメータである連立常微分方程式の関数、

 2211),,(yyytf =

 1212),,(yyytf −=

は関数 FDiffとして次のように宣言されている。
 function FDiff(t : Extended;
 y : TVectorRK) : TVectorRK;
 begin
 Result[1]:= y[2];
 Result[2]:=-y[1];
 end;

PRKSystem.dprを実行すると図６のような画面になる。

図６ 連立常微分方程式の解をルンゲ・クッタ法で求めた場合

岡本安晴 2001.1.29；2001.7

―14―

プログラム PRKSystem.dprもフォルダ difffilesにある。

ユニットファイルUTypeDefRK.pasにおいて配列の型TVectorRKと手続き型TFuncRK

が宣言されている。これらの型は、USystemRK.pasでは手続き RungeKuttaSystemのパ

ラメータの宣言において、URKSystem.pasでは連立常微分方程式の関数),,,(1 nj yytf L を

与える関数 FDiffの宣言において用いられているので、それぞれの uses節で使用を宣言し

ておく。これらのユニットの uses節による関係を図示すると図７のようになる。図中の矢

印は、元の方のユニットの usesにおいて先の方のユニットの使用が宣言されていることを

表わす。

図７ ユニットの関係

オブジェクト（クラス型）化

微分方程式とその解法を１つのまとまりとして考えると、オブジェクトとして表わすこ

とが考えられる。「オブジェクト」とは、Object Pascal（Delphi）ではクラス型として生成

されたもの（インスタンス）をいう（９）、（１０）。しかし、C++では、構造型として用意された

もの（１１）、あるいは、あらゆるデータ型に対してそのメモリー上にとられたもの（１２）をオ

ブジェクトといっている。C++では、オブジェクトがクラス型以外のものを表わしているこ

とがあるので注意が必要である。

ルンゲ・クッタ法のクラス型を次のように用意した。

 type TRKObj =
 class
 h, t, y : Extended;
 f : TFDiff;

岡本安晴 2001.1.29；2001.7

―15―

 // 初期化を伴うオブジェクトの生成
 constructor CreateRK(h0, t0, y0 : Extended;
 f0 : TFDiff);
 // 初期化用メソッド
 procedure InitRK(h0, t0, y0 : Extended;
 f0 : TFDiff);
 // １ステップ分の計算
 procedure CalcRK(var t1, y1 : Extended);

 end;

各コンポーネントおよびパラメータの意味は、手続き Runge_Kutta のものに対応している。

このクラス型によるルンゲ･クッタ法は、ユニット UDiffEqObj.pas に用意した。プログラ

ム PRK.dpr をこのクラス型を用いたものに変更したものが PRKObj.dpr である。このプログ

ラムもフォルダ difffiles に含まれている。

常連立微分方程式に対するルンゲ・クッタ法のクラス型は次のように宣言されている。

 type TRKSystemObj =
 class
 h, t : Extended;
 y : TVectorRK;
 f : TFuncRK;
 m : Longint;

 // 初期化を伴うオブジェクトの生成
 constructor CreateRKSys(h0, t0 : Extended;
 y0 : TVectorRK;
 f0 : TFuncRK;
 m0 : Longint);
 // 初期化用メソッド
 procedure InitRKSys(h0, t0 : Extended;
 y0 : TVectorRK;
 f0 : TFuncRK;
 m0 : Longint);
 // １ステップ分の計算
 procedure CalcRKSys(var t1 : Extended;

 var y1 : TVectorRK);

 end;

コンポーネントおよびメソッドのパラメータの意味は、手続き RungeKuttaSystem における

ものに対応している。

このクラス型 TRKSysObj は、ユニット UDiffEqSysObj.pas に用意されている。TVectorRK

などの UDiffEqSysObj.pas で用いられている型は、ユニット UTypeDefRK.pas（リスト２）

に宣言されている。この UTypeDefRK.pas は、ユニット UDiffEqSysObj.pas、およびクラス

岡本安晴 2001.1.29；2001.7

―16―

型 TRKSystemObj を使用するユニットの両ユニットの uses 節において、その使用を宣言す

る必要がある。

クラス型 TRKSysObj を用いてプロジェクト PRKSystem.dpr を書き改めたものがプロジェ

クト PRKSystemObj.dpr として用意されている。

独立な２つのオブジェクト

オブジェクトを用いると複数のお互いに独立な微分方程式が簡単に扱える。プログラム

PRK2Obj.dpr は PRKObj.dpr を２つのオブジェクトを用いたものに改めたものである。単位

円の軌跡)cos,(sin tt を表わす２つの関数

 tx sin= 、 ty cos=

を２つの微分方程式

 t
dt
dx

cos= 、 t
dt
dy

sin−=

の解として与えている。すなわち、２つの関数宣言

 function FDiffC(t, y : Extended) : Extended;
 begin
 FDiffC:=-sin(t);
 end;
および
 function FDiffS(t, y : Extended) : Extended;
 begin
 FDiffS:=cos(t);

 end;

と２つのオブジェクト

 RKC:=TRKObj.Create; RKS:=TRKObj.Create;

を用意して、初期化を

 RKS.InitRK(d, t, vs, FDiffS);
 RKC.InitRK(d, t, vc, FDiffC);

というように行い、 tx sin= 、 ty cos= の値を求めるオブジェクトを設定している。

 ２つのオブジェクトを用いたプログラム PRK2Obj.dpr もフォルダ difffiles に含まれて

いる。

簡単な使用例

微分方程式の解を単に求めるだけのときは、

岡本安晴 2001.1.29；2001.7

―17―

 for i:=1 to n do
 Runge_Kutta(dt, t[i-1], RKC[i-1], DCos, t[i], RKC[i]);

というようにして簡単に配列に解の値を設定していくことができます。

 プログラム PSimple.dpr は、上の様にして解の値を配列に求める例である。このプログ
ラムの場合は、使用例ということでオイラー法からクラス型による連立常微分方程式の解
法までが同時に使用されている。コメントを詳しく付けたので参照されたい。このプログ
ラムもフォルダ difffiles にある。実行開始時には計算結果を書き出すためのテキストフ
ァイル名の設定を求めるダイアログボックスが表示される。ファイル名の設定後、フォー
ムのＯＫボタンをクリックすると計算が始まる。計算結果はテキストファイルに書き出さ
れているので、プログラムの実行終了後、エディタで開いて見ることができる。

参 考 文 献

（１）川上一郎 「数値計算」Pp.201、岩波書店、1989

（２）岡本安晴 「Delphiで学ぶデータ分析法」Pp.274、CQ出版株式会社、1998．。

（３）岡本安晴 「Delphiでエンジョイプログラミング」Pp.158、CQ出版株式会社、1999．

（４）R.L.Burden & J.D.Faires. Numerical Analysis, 3rd ed. Pp.676, Prindle, Weber &

 Schmidt, 1985.

（５）吉澤純夫 「力学シミュレーション入門」Pp.161、CQ出版株式会社、1998.

（６）R.P.Feynman, R.B.Leighton & M.Sands. Lectures on Physics,I. Addison -

 Wesley Publishing company, 1963.

（７）岡本安晴「Delphiプログラミング入門」Pp.207、CQ出版株式会社、1997．

（８）長野三郎・長島忍・吉村伸「Pascalプログラミング、第２版」、Pp.170、東京大学

 出版会、1992．

（９）インプライズ株式会社（編訳）「Borland Delphi ５ Object Pascal 言語ガイド」、

1999．

（１０） , Mastering Delphi 5. Pp.1085, SYBEX, 1999.

（１１）S.R.ディビス（著）・瀬谷啓介（訳）「改訂Ｃ++のからくり」、Pp.439、ソフト

 バンクパブリッシング株式会社、1999.

（１２）柴田望洋「プログラミング講義 C++」、Pp.505、ソフトバンクパブリッシング

 株式会社、1996.

