2001.1.29

dy
==t
G

Dy
—» f(t,
o > TLY)

Yia =Y +Dy
Yia » Y, +DEXF (1Y)
t=t, Yo

t=t. y=y, h=Dt tl=t,, =t +Dt yl=vy,
h=Dt t1 oyl

Euler

procedure Euler(h, t, y : Extended;
f : TFDiff;
var tl, yl : Extended);
begin
yl:=y+h*f(t,y);
tl:=t+h;
end; { Euler }

Euler

TRY PC 2000 Delphi

2001.7

Y1

2001.1.29

Euler
ﬂ =-4dgnt
dt
y = cost
X =sint
(%,y) =(sint,cost) ty, - b,

(sint;,y;)

LA SRR s

PEuler.dpr

2001.7

2001.1.29 2001.7

t:=tl; y:=yl;

Euler(d, t, y, FDiff, t1, yl);
ix1:=XPos(sin(tl)); iyl:=YPos(yl);
Pen.Color:=clRed;

LineTo(ix1,iyl);

Euler (sint;,y.) (ix1,iyl)

Euler
f(t,y) =-sint

function FDIiff(t, y : Extended) : Extended;
begin
FDiff:=-sin(t);

end;
FDiff

5= Dometar s [se |5 sw |

e e |

UEiler.pas

PEuler.dpr UEuler.pas Timerl

GO OnTimer

Dt Euler
Euler

2001.1.29 2001.7

(Xi ’ yl) (Xi+1' yi+1)
PEuler.dpr difffiles difffiles.EXE
difffiles
Euler UDiffEq.pas
PEuler.dpr 0.01
0.1
A Fe IR
el T | g | it |
LS R
.-.-*""'F’--_'_-'"?""‘-
T =
- T,
4 N
/ \
Jfr i
H‘« ff
\ /
i, e
i 2
= P
TR L
AR SRR M
0.1
Midpoint method
t=g f(t.y) t, =t +Dt
yi+1 ti ti+1
Midpoint method
1
t +=Dt
5 y

Yi +%Dtxf(ti’Yi)

2001.1.29 2001.7

f& + 2oy, +20xf ()
e 2 2 [}
Ly =t +Dt Yin

Yia =Y +Dtxf8% +1Dt,yi +1Dt><f (ti,yi)g
e 2 2 [}

Midpoint method

Feynman
Delphi
Midpoint method Runge Kutta
Midpoint method

Midpoint method Dt=t,, -t
ti, =t +Dt
Ky kK, Dy=Yi.-V

kl
kl = Dtxf(ti!yi)
k2
t, +Dt/2 y Dy K,

Dy/2=vy, +k /2
k, =Dtxf(t, +Dt/2,y, +k, /2)

Ky k,
K, y, +k, /2
k, =Dt xf (t. +Dt/2,y, +k,/2)

K, i, =t +Dt
f (t, y) Ly y k3 y, + k3
k4 :uxf (tl +u1yi +k3)

y Dy = VY-V 4 k, k, ks

t t +Dt/2
kl k2
f(t,y)
y +
y
k4

2001.1.29

Dy = (k, + 2k, + 2k, +k,)/6

O(Dt)
O((Dt)*)

k, =Dtxf(t,y)
k, =Dtxf(t, +Dt/2,y, +k /2)
ko, =Dtxf(t, +Dt/2,y +k,/2)
ky, =DExf(t + Dty +k;)
Yin bin
Yia = ¥ H(K +2k, + 2K, +K,)/6
L, =1 + Dt

Runge_Kutta

procedure Runge_Kutta(h, t, y : Extended;
f - TFDiff;
var tl1, yl : Extended);
var k1, k2, k3, k4 : Extended;
begin
kl:=h*f(t,y);
k2:=h*f(t+0.5*h, y+0.5*k1);
k3:=h*f(t+0.5*h, y+0.5*k2);
kd:=h*f(t+h, y+k3);

y1:=y+(k1+2*k2+2*k3+k4)/6;

tl:=t+h;
end; { Runge_Kutta }

PRK.dpr PEuler.dpr
Euler Runge_Kutta
0.1

2001.7

2001.1.29 2001.7

2001.1.29 2001.7

OnTimer Dt

PRK.dpr difffiles

d
%= fL(t Y V)

dy,
dt

=, (LY, Y,

Kl,j = [Ixfj(ti’yl,i""lyn,i)

Ky, y, t t,=t+Dt Yii t Ky /2

fj(ti +[I/2’y1,i +K1,1/2a"'ayn,i + Kl,nlz)

K2,j = Dtxfj(ti +Dt/2’y1,i +K1,1/2a""yn,i + Kl,nlz)

Kl

g

2001.1.29

Ks,j = Dtxfj(ti +Dt/2’ yl,i +K2,1/2"”’yn,i +K2,n/2)

K4’j
fk(t’yl"”’yn) yj ti +Dt yj,i + Ks,j
K4

y!

K4,j = Dtij (ti + Dt’yl,i + K3,1""’ yn,i + K3,n)

Yi DYj =VYiia- Y

yj,i+1 = yj,i + (Kl,j + 2l<2,j + 2K3,j + KA,J)/6

Kl,j = uxfj(ti’yl,i""!yn,i); j=1---,n

Kz,j = Dtxfj(ti +Dt/2’y1,i + K1,1/2""ayn,i +K1,n/2); j=1---,n

Ks,j = Dtxfj(ti +Dt/2’ yl,i +K2,1/2"”’yn,i +K2,n/2); J ::L""n

K4,i = Dtxfj(ti +Dt’y1,i +K3,1""’yn,i + K3,n); J =1--,n

Kl,j K4,j Yiia Ynin

yj,i+1 = yj,i +(K1,j +2K2,j +2K3,j + K4,])/6

RungeKuttaSystem
USystemRK.pas

2001.7

2001.1.29

2001.7

unit USystemRK; //

// R.L.Burden & J.D.Faires (1985)

// Numerical Analysis, 3rd ed., Algorithm 5.7
interface

uses UTypeDefRK;

procedure RungeKuttaSystem(t, h : Extended;

y . TVectorRK;
f : TFuncRK;
m : integer;

var tl : Extended;
var yl : TVectorRK);

implementation

procedure RungeKuttaSystem(t, h : Extended;

y : TVectorRK;
f : TFuncRK;
m : integer;

var tl : Extended;
var yl : TVectorRK);
var y0, v, k1, k2, k3, k4 : TVectorRK;
i : integer;
begin
v=f(t, y);
for i1:=1 to m do
ki[i]:=h*v[i];

for i:=1 to m do
yo[i]:=y[i]+k1[i]*0.5;

v:=F(t+h*0.5, y0);

for i1:=1 to m do
k2[i]:=h*v[i];

for i1:=1 to m do
yo[i]:=y[i]+k2[i]*0.5;

v:=F(t+h*0.5, y0);

for i1:=1 to m do
k3[i]:=h*v[i];

—10—

2001.1.29 2001.7

for i1:=1 to m do
yo[i]:=y[i]+k3[i];

v:=f(t+h, y0);

for i:=1 to m do
k4[i]:=h*v[i];

for i:=1 to m do
yi[i]:=y[i]+(k1[i]+2*k2[1]+2*k3[i]+k4[i])/6;

tl:=t+h;
end; { RungeKuttaSystem }

end.
RungeKuttaSystem
procedure RungeKuttaSystem(t, h : Extended;
y - TVectorRK;
f : TFuncRK;
m . integer;
var tl : Extended;
var yl : TVectorRK);
RungeKuttaSystem t Dt
Yii Yni
fj (t’ Vi yn)
TVectorRK fL YY)
UTypeDefRK

USystemRK uses UTypeDefRK

USystemRK.pas

2001.1.29 2001.7

UDiffEqSysObj .pas

unit UTypeDefRK;

interface

const MaxNFunc 10;

type TVectorRK = array[l..MaxNFunc] of Extended;

ti+l

yl

PRKSystem.dpr

TFuncRK = function(t : Extended;
y o TVectorRK) : TVectorRK;
implementation
end.
UTypeDefRK TFuncRK
TFuncRK = function(t : Extended;
y - TVectorRK) : TVectorRK;
fj (t’yl’...’ yn);] =1...
RungeKuttaSystem A Ya
TVectorRK MaxNFunc
RungeKuttaSystem
tl yl,i+1 yn,i+1
RungeKuttaSystem
y, =sint
y, = cost

2001.1.29 2001.7
&y
d 7
&,
dt !
(Y1, Y,) = (sint, cost)
(Y1i+ Ya,)
RungeKuttaSystem
fi(t Y Y2) = Y,
fo(t v Yo) =-
FDiff
function FDiff(t : Extended;
y : TVectorRK) : TVectorRK;
begin
Result[1]:= y[2];
Result[2]:=-y[1];
end;
PRKSystem.dpr
A g |
Y | |
EERAD= Bn
e T
/"'f x\“\
/ Ty
.r'/ \\\‘-.
b
/
| \
. f
| /
K
.‘kx /
x\\ 7
e i
.
B

—13—

2001.1.29 2001.7

PRKSystem.dpr difffiles
UTypeDefRK.pas TVectorRK
USystemRK.pas RungeKuttaSystem
URKSystem.pas £t Y Ya)
FDiff uses
uses
uses

UTypelefRK. pas
(BROES)

USystemkE. pas
(RungeKuttaSystem)

URK5vstem. pas
(FDiff)

Object Pascal Delphi

C++

C++
type TRKObj =
class
h, t, y : Extended;
f : TFDiff;

2001.1.29 2001.7

//
constructor CreateRK(h0, t0, yO : Extended;
10 : TFDiff);
//
procedure InitRK(hO, t0, y0 : Extended;
10 : TFDIff);
//
procedure CalcRK(var tl1, yl : Extended);
end;
Runge_Kutta
UDIffEqObj .pas
PRK.dpr PRKObj .dpr
difffiles

type TRKSystemObj =

class

h, t : Extended;

y - TVectorRK;

f : TFuncRK;

m : Longint;

//

constructor CreateRKSys(hO, tO : Extended;
y0 . TVectorRK;
0 . TFuncRK;
mO : Longint);

//

procedure InitRKSys(hO, t0 : Extended;
y0 . TVectorRK;
10 . TFuncRK;
mo : Longint);

//

procedure CalcRKSys(var tl : Extended;
var yl : TVectorRK);

end;
RungeKuttaSystem
TRKSysObj UDiIFFEQSysObj . pas TVectorRK
UDiFFEQSysObj - pas UTypeDefRK.pas
UTypeDefRK.pas UDiFFEQSysObj - pas

—15—

2001.1.29

TRKSystemObj uses

TRKSysObj PRKSystem.dpr
PRKSystemObj .dpr

PRK20bj.dpr PRKObj .dpr
(sint,cost)
Xx=sint y=cost

function FDiffC(t, y : Extended) : Extended;
begin
FDIffC:=-sin(t);
end;

function FDIffS(t, y : Extended) : Extended;

begin
FDiffS:=cos(t);
end;
RKC:=TRKObj .Create; RKS:=TRKObj .Create;

RKS.INitRK(d, t, vs, FDiffS);
RKC.INitRK(d, t, vc, FDIffC);

X=sint y=cost
PRK20bj .dpr difffiles

—16—

2001.7

2001.1.29 2001.7

for i:=1 to n do
Runge_Kutta(dt, t[i-1], RKC[i-1], DCos, t[i], RKC[i]);

PSimple.dpr
difffiles
Pp.201 1989
Delphi Pp.274 CQ 1998
Delphi Pp.158 CQ 1999

R.L.Burden & J.D.Faires. Numerical Analysis, 3rd ed. Pp.676, Prindle, Weber &
Schmidt, 1985.
Pp.161 CQ 1998.
R.P.Feynman, R.B.Leighton & M.Sands. Lectures on Physics,l. Addison -
Wesley Publishing company, 1963.

Delphi Pp.207 CQ 1997
Pascal Pp.170
1992
Borland Delphi Object Pascal
1999
M. Cantti| , Mastering Delphi 5. Pp.1085, SYBEX, 1999.
S.R. ++ Pp.439
1999.
C++ Pp.505
1996.

