
岡本安晴 2001.1.29；2001.8

―1―

積 分 の 計 算1

定積分 ∫
b

a
dxxf)(、および２重積分 dxdyyxf

b

a

xh

xg∫ ∫ 




)(

)(
),(の計算について考える｡

シンプソンの公式

定積分 ∫
b

a
dxxf)(の値を求める方法として、区間],[ba を２N 等分したときの各

分点を隣合う３点ごとにまとめてこれらの３点を通る２次関数で)(xf を近似し、

それらの２次関数の積分値の和として求めるものがある。この、定積分の値を、

被積分関数を近似する２次関数の積分の和として求める方法は、シンプソンの

公式と呼ばれている１）、２）、３）、４）。

２N個の分点を、 0xa = 、 1x 、・・・、 12 −Nx 、 bx N =2 、とする。

 Nabiaxi 2/)(−⋅+= ； Ni 2,,0 L=

となっている。

３分点、 jx2 、 12 +jx 、)1(2 +jx 、における関数値を、)(22 jj xfy = 、)(1212 ++ = jj xfy 、

)()1(2)1(2 ++ = jj xfy 、とおき、３点、),(22 jj yx 、),(1212 ++ jj yx 、),()1(2)1(2 ++ jj yx 、を通

る 2次関数を)(xg j とおく。このとき、

 ∫
+

++ ++=)1(2

2

)4(
3

)()1(2122
j

j

x

x jjjj yyy
h

xg

となる。ここで、
)2/()(Nabh −=

である。
上式は、以下のようにして導くことができる。

まず、２次関数)(xg j を次のようにおく。

1 この解説は、TRY!PC,2000 年６月号「Delphi による数値計算プログラミングのすすめ：第４回

積分の計算」の原稿をもとにしたものである。

岡本安晴 2001.1.29；2001.8

―2―

))((

))((
)(

)1(22122

)1(212
2

++

++

−−

−−
=

jjjj

jj
jj xxxx

xxxx
yxg

))((

))((

)1(212212

)1(22
12

+++

+
+ −−

−−
+

jjjj

jj
j xxxx

xxxx
y

))((

))((

12)1(22)1(2

122
)1(2

+++

+
+ −−

−−
+

jjjj

jj
j xxxx

xxxx
y

上の)(xg j が３点、),(22 jj yx 、),(1212 ++ jj yx 、),()1(2)1(2 ++ jj yx 、を通ることは容易

に確かめられる。
 変数変換

 12 ++= jxtx

を行って)(xg j の積分を計算すると、

 ∫∫ − ++=+ h

h jj

x

x j dtxtgdxxg
j

j

)()(12
)1(2

2

 ∫∫ −+− −⋅
−+

+
−⋅−

−⋅
=

h

hj

h

hj dt
hh

htht
ydt

hh
htt

y
)(

))((
)2()(

)(
122

 ∫−+ ⋅
⋅+

+
h

hj dt
hh

tht
y

2
)(

)1(2

















−−








+⋅⋅=

22332
1 2233

22
hh

h
hh

h
y j









+−







+⋅⋅− +)(

33
1 2

33

212 hhh
hh

h
y j

















−+








+⋅⋅+ + 22332

1 2233

2)1(2
hh

h
hh

h
y j

33

4
3)1(2122

h
y

h
y

h
y jjj ⋅+






−⋅−⋅= ++

)4(
3)1(2122 ++ ++= jjj yyy
h

岡本安晴 2001.1.29；2001.8

―3―

となる。

 被積分関数)(xf の２次関数)(xg j による近似を用いた積分により、

 ∫
b

a
dxxf)(∑∫

−

=

+=
1

0

)1(2

2

)(
N

j

x

x

j

j

dxxf

 ∑∫
−

=

+≈
1

0

)1(2

2

)(
N

j

x

x j
j

j

dxxg

 ∑
−

=
++ ++=

1

0
)1(2122)4(

3

N

j
jjj yyy

h

 







+++= ∑∑

−

=

−

=
+

1

1
2

1

0
1220 24

3

N

j
j

N

j
jN yyyy

h
 （１）

となる。ここで、記号≈は近似式であることを表わす。
上式（１）はシンプソンの公式と呼ばれている。誤差は

 







+++− ∑∑∫

−

=

−

=
+

1

1
2

1

0
1220 24

3
)(

N

j
j

N

j
jN

b

a
yyyy

h
dxxf

)(
180

)()4(
4

µf
hab

⋅
⋅−

−=

となる（２）。ここで、 ba << µ である。

関数)(xf と区間],[ba に対して、)()4(µf の値を無視すると、誤差は

444

4 1
22







⋅






 −

=





 −

=
N

ab
N

ab
h

で決まり、)/1(N の４乗の関数になっている。Ｎを２倍にすると誤差は

16/1)2/1(4 = 、すなわち１６分の１になることが期待される。

このように、分点の数２Nによって（１）式による積分の値の精度は変わる。
適当なNの値から始めて十分な精度が得られるまでNの値を順番に大きくして

いく。（１）式において N を 2 倍にすると始めの分点の関数値 jy は全て偶数番

目の分点の値となり、新しく加えられた分点は奇数番目のものとなる。したが

って、N を２倍にする前に求めた関数値を（１）式による再計算で使うことが
でき、２倍にしたときは奇数番目の関数値のみを計算すればよいことになる。

さらに、（１）式を見ると、 ∑ −

= +=
1

0 121
N

j jyS は奇数番目の分点の関数値の和であり、

岡本安晴 2001.1.29；2001.8

―4―

∑ −

=
=

1

1 22
N

j jyS は偶数番目の分点の関数値の和になっている。つまり、Nを２倍に

する前の 1S と 2S の値を足せば N を２倍にしたときの 2S の値となり、N を２倍
にしたときの 1S の値だけを直接関数値の計算によって求めればよいことになる。

上の方法でシンプソンの公式により定積分の値を求める関数を Simpsonとし
て用意した。関数 Simpsonはユニットファイル UIntegral.pasに宣言されてい
る。
関数 Simpsonのヘッダーは

 function Simpson(a, b : extended;

 f : TIntegralFunc;

 acc, vzero : extended) : extended;

となっている。第１，２パラメータ、ａとｂ、に積分範囲の下限と上限を設定

する。第３パラメータｆは被積分関数を指定する。手続き型 TIntegralFunc は
ユニット UIntegralにおいて

 type TIntegralFunc = function(x : extended) : extended;

と宣言されている。被積分関数のヘッダーは、この手続き型に合わせて宣言す

る。

例えば、

 function f(a : extended) : extended;

 begin

 f:=1/a;

 end;

とする。ヘッダーに現れる変数の識別子（名前）は、aでも xでも、あるいは他
のものでもよい。ヘッダーにおけるパラメタリストの形が一致しておればよい。

上の関数 fは、 ∫ ⋅
b

a
dxx/1 を計算するときの被積分関数を与えるものである。

関数 Simpsonの第４，第５パラメータ、accと vzero、は積分値を求めるとき
の精度とゼロとみなす基準値を指定するものである。

（１）式においてＮの値を２倍にしていくと（１）式の精度が上がるが、その

ときの積分値の変化量の割合が acc より小さくなったところで十分な精度の値
が得られたとして計算が終了する。また、算出した積分値の絶対値が vzero よ

岡本安晴 2001.1.29；2001.8

―5―

り小さいときは、求める積分値は０であるとして計算を終了する。

関数Simpsonを用いるときは、ユニットUIntegralの使用を宣言しておいて、
被積分関数を上の例のように宣言する。

 10log/1
10

1
=⋅∫ dxx

の計算のときは

 v:=Simpson(1.0, 10.0, f, 1.0e-15, 1.0e-17);

のように Simpsonを呼出す。
プログラムト PSimpson.dprでは上の計算が行われている。このプロジェクト
を実行して表示されるフォーム上のＯＫボタンをクリックすると、図１のよう

に結果が表示される。Simpson によって求めた値と正しい値 10log がラベルの

Captionに設定されて表示される。

図１ 定積分 ∫ ⋅
10

1
/1 dxx の計算

プログラム PSimpson.dpr は、ダウンロードしたファイルの解凍で作成され
るフォルダ integralfilesにある。

適応的方法

シンプソンの公式を用いる上の方法では、算出した積分値の精度を上げるた

めにＮの値を２倍にしている。しかし、精度を上げるためには、積分区間],[ba で

一様に分点の数を増やす必要はないこともある。２次関数による近似が不十分

である領域においてのみ分点の数を増やせばよく、比較的少ない分点で十分に

よい近似が得られる領域においてまで分点の数を同じように増やすのは計算の

無駄になる。適応的方法２）、５）では、分点の数を増やす必要のある領域において

のみ分点を増やし、増やす必要のない領域は分点の数を増やさない、というこ

とによって不必要な分点の増加に伴う計算量の増加が避けられている。

 Press ら２）の適応的方法では、N=1 のときのシンプソンの公式を基にして、
積分区間の２分割が以下のように適応的に繰り返されている（図２）。

岡本安晴 2001.1.29；2001.8

―6―

図２ シンプソンの公式（N=1）を用いた適応的方法

（１）区間],[ba における仮の積分値を 0S とする。

（２） aa =0 、 bb =0 とおき、区間 0I を],[000 baI = とおく。

（３） 01 aa = 、 2/)(0021 baab +== 、 02 bb = とおき、区間 0I を 2 等分し

て],[111 baI = および],[222 baI = とおく。それぞれの積分区間 1I およ
び 2I でのシンプソンの公式（Ｎ＝１）による積分値を 1S および 2S と

おく。

（４） 21 SS + が 0S に十分近ければ 21 SS + を区間 0I における積分値とする。

岡本安晴 2001.1.29；2001.8

―7―

十分に近くないときは、 1I および 2I をそれぞれ],[000 baI = とおき、

（３）で算出された 1S および 2S をそれぞれの 0S として（３）に戻る。

上の適応的方法によって積分値を求める関数 AdaptiveQをユニットファイル

UIntegral.pasに用意した。関数 AdaptiveQでは、ステップ（１）での 0S （初

期値）を 0.0とおいて、被積分関数の値の計算を省いている。これは、最初の 0S

の値は不正確である可能性が高いので、関数値を求めて計算しても無駄になる

可能性があるからである。
AdaptiveQの関数ヘッダーは、次のように宣言されている。

 function AdaptiveQ(a, b : extended;

 f : TIntegralFunc;

 acc, vzero : extended) : extended;

パラメータは、関数 Simpsonの場合と同じである。

定積分 ∫
1

0
dxe x の値を求めるときは、被積分関数を例えば

 function f(a : extended) : extended;

 begin

 f := exp(a);

 end;

と宣言して、

 v:=AdaptiveQ(0.0, 1.0, f, 1.0e-9, 1.0e-11);

というように関数 AdaptiveQを呼出す。
プログラム PAdaptiveQ.dprでは、上のようにして求めた値ｖに１を加えて、

 eeedxev x =+−=+=+ ∫ 111 011

0

と eの値を求めている。この値は、フォーム上に「積分値+１」の値として表示

岡本安晴 2001.1.29；2001.8

―8―

される（図３）。フォーム上には eの値も表示される。
プログラム PAdaptiveQ.dprはフォルダ integralfilesにある。

図３ edxe x =+∫ 1
1

0
の計算

関数AdaptiveQなどユニットUIntegralの関数を呼出したときは、UIntegral
のフォームが表示される。このフォームには Memoコンポーネントが貼り付け
られていて、計算の途中経過が表示されるようになっている。

図４ 計算の途中経過の表示

図４は、PAdaptiveQ.dpr の実行時に AdaptiveQ を呼出したときのものであ

る。積分区間],[000 baI = の下限と上限の値 0a と 0b が、ａとｂの値として表示さ

れている。ｎは再帰的呼び出しの深さを表す。
これらの途中経過の表示はかなりの実行時間を要するので、この表示が行わ

れないようにすると計算時間は随分と速くなる。表示が行われないようにする

には、この表示を行う手続き Display の実行の箇所をコメントとする。また表
示が必要になったときは、コメント記号//などをはずせば再び表示させることが
できる。

岡本安晴 2001.1.29；2001.8

―9―

また、Display を実行しないときは Memo コンポーネントの貼り付けられて
いるフォームも必要ないので、このフォームの生成と廃棄の部分を

 // FIntegral:=TFIntegral.Create(application);

 // FIntegral.Visible:=true;

 ・

 ・

 ・

 // FIntegral.Close;

というようにコメントとしておくと、関数 AdaptiveQなどの呼び出し時のユニ
ット UIntegralのフォームの表示がなくなる。

ガウス・ルジャンドルの積分公式
シンプソンの公式（１）では、積分区間],[ba の下限と上限での値、)(af と)(bf 、
が用いられている。（半）無限区間での積分を変数変換によって有限区間],[ba で
の積分に変換したときには、)(af あるいは)(bf の値を与えることが難しいこと

がある。このような積分の計算では上限と下限での関数値を用いない積分公式

が便利である。このような公式としてガウス･ルジャンドルの積分公式１）、２）、４）、

６）

 ∑∫
=

++−
−

≈
n

i
ii

b

a
abxabfw

ab
dxxf

1

)2/)(}2/)({(
2

)(

がある。ここで、 ix はｎ次のルジャンドルの多項式)(xPn の根、

1− 1x< <<L 1<nx であり、 iw は次式

 ∫− ′−
=

1

1)()(
)(

dx
xPxx

xP
w

ini

n
i

で与えられるものである。
ガウス・ルジャンドルの積分公式の誤差は

)(
})!2){(12(

)()!()2(
3

124

ξn
n

f
nn

abn
+

− +

と表わされる（１）。積分区間],[ba を２分すると、誤差は 12)2/1(+n になることが期

待される。 9=n のときは、
 61912 10)2/1()2/1(−+ ≈=n

岡本安晴 2001.1.29；2001.8

―10―

となる。
ユニットファイル UIntegral.pas の関数 Gauss_Legendre は、ｎ＝９の場合
のガウス･ルジャンドルの積分公式によって定積分の値を求めるものである。ｎ

の値は９で十分な場合もあるが、関数と積分区間の組み合わせによってはｎ＝

９では十分な精度が得られないことがある。十分な精度が得られないときは、

積分区間を２分して、それぞれの区間においてｎ＝９の場合のガウス･ルジャン

ドルの積分公式によって積分値を求め直すことにする。この積分区間の２分を

繰り返すという適応的方法によって所定の精度を得ることにする。このガウ

ス・ルジャンドルの積分公式を基にした適応的方法によって積分の計算を行う

関数を AdaptiveGLとして UIntegral.pasに宣言した。関数のヘッダーは

 function AdaptiveGL(a, b : Extended;

 f : TIntegralFunc;

 w_intvl : Extended;

 acc, // acc >= 1.0E-17

 ZeroV

 : Extended) : Extended;

となっている。ａとｂに積分区間の下限と上限を設定する。ｆは被積分関数で

ある。w_intvlは、適応的方法で積分区間を分割していくときの積分区間の長さ
の基準値である。積分区間の長さが w_intvl より小さくなるまで分割が進めら
れる。これにより、関数値が最初の積分区間の狭い範囲で非ゼロである場合に、

誤って積分値がゼロに収束したと判定されることを防ぐ。acc と ZeroV には、
精度とゼロとみなす基準値を設定する。

AdaptiveGL を用いたサンプルプログラム PGL.dprでは、正規分布の累積確
率を求めている。正規分布の累積確率

 ∫ ∞−

−⋅=<
z x dxezXob

25.0

2
1

)(Pr
π

 ∫ ∞−

−=
z x dxe

25.0

2
1
π

の計算のために、定積分 ∫ ∞−

−z x dxe
25.0 の計算が関数 AdaptiveGLによって行われて

いる。積分区間が半無限区間なので、次の変数変換を行っている。
 tx log=

このとき、

岡本安晴 2001.1.29；2001.8

―11―

 ∫∫ ×−=
∞−

− zz x

t
dt

tdxe
exp

0

25.0))(log5.0exp(
2

 （２）

となる。
 PGL.dprのユニット UGL.pasでは、関数宣言を

 function NormalKernel(x : extended) : extended;

 begin

 NormalKernel:=exp(-0.5*sqr(x));

 end;

 function NormalKLN(t : extended) : extended;

 begin

 NormalKLN:=NormalKernel(LN(t))/t;

 end;

と行って、（２）式の積分を

 cump:=AdaptiveGL(0.0, exp(z), NormalKLN, 0.5, 1.0e-9, 1.0e-15);

と求めている。上の場合、w_intvlの値 0.5は適当に設定したものである。正規
分布の場合はこれでよいが、他の関数、例えばベータ分布の場合は極狭い区間

に確率密度が集中することがある。このような場合には、確率密度の集中して

いる区間の幅より小さい値を設定する必要がある４）。最後のパラメータ ZeroV
は、適応的に積分区間を細分して行ったときの各積分区間において積分値がゼ

ロであるかどうかの判定に使う基準値であるが、目安としては

 acc ×< 値の絶対値）（積分値の大体の予想ZeroV
である。

PGL.dprを実行して表示されるフォーム上の GO ボタンをクリックすると、
図５のような画面になる。画面上の適当な位置をクリックすると横軸上の位置

に対応したｚの値が読み込まれ、確率)(Pr zXob < が計算されて表示されるとと
もに、グラフの)(Pr zXob < に対応する領域が緑で塗り潰される。クリックのと

きの縦方向の位置は無視される。
プログラム PGL.dprはフォルダ integralfilesにある

岡本安晴 2001.1.29；2001.8

―12―

図５ 画面のクリックで確率が計算される

２重積分（積分領域が矩形の場合）
ガウス・ルジャンドルの積分公式を 2重積分

 ∫ ∫
b

a

d

c
dxdyyxf),(（３）

に適用してみる６）。
まず、ｙに関する積分にガウス･ルジャンドルの積分公式を適用して

 ∑∫
=

++−
−

≈
n

j
jj

d

c
cdycdxfw

cd
dyyxf

1

)2/)(}2/){(,(
2

),(（４）

を得る。ここで、 jy はガウス・ルジャンドルの積分公式における第ｊ番目の分

点であり、 jw はその点に対する重みである。

 （３）式と（４）式より

岡本安晴 2001.1.29；2001.8

―13―

∫ ∫
b

a

d

c
dxdyyxf),(∫ ∑ 








++−

−
≈

=

b

a

n

j
jj dxcdycdxfw

cd

1

)2/)(}2/){(,(
2

を得る。上式における xに関する積分にガウス・ルジャンドルの積分公式を適用
すると、

∫ ∑ 







++−

−

=

b

a

n

j
jj dxcdycdxfw

cd

1

)2/)(}2/){(,(
2

 ∑ ∑
= =









++−++−

−−
≈

n

i

n

j
jiji cdycdabxabfw

cd
w

ab

1 1

)2/)(}2/){(,2/)(}2/)({(
22

 ∑∑
= =

++−++−
−

⋅
−

=
n

i

n

j
jiji cdycdabxabfww

cdab

1 1

)2/)(}2/){(,2/)(}2/)({(
2

)(
2

)(

となる。
 以上より、

∫ ∫
b

a

d

c
dxdyyxf),(

∑∑
= =

++−++−
−

⋅
−

≈
n

i

n

j
jiji cdycdabxabfww

cdab

1 1

)2/)(}2/){(,2/)(}2/)({(
2

)(
2

)(

（５）
を得る。
 ２重積分の場合も、設定した精度の条件が満たされるまで積分区間の分割を
繰り返す。変数 xと yそれぞれの区間を２分するので４つの積分領域に分割され

ることになる。
上のガウス・ルジャンドルの積分公式を２重積分に適用して（（５）式）適応

的に積分値を求める方法で２重積分を計算する関数 AdaptiveGLDbl をユニッ
トファイル UIntegral.pas に用意した。この関数のヘッダーは次のようになっ
ている。

 function AdaptiveGLDbl(xa, xb, ya, yb,

 xw_intvl, yw_intvl,

 acc, zerov : Extended;

 f : TDIntegralFunc) : Extended;

第１，第２パラメータ xaと xbは、被積分関数の第 1変数ｘの積分区間],[ba

の下限ａと上限ｂを設定するものである。第３、第４パラメータ yaと ybには、

岡本安晴 2001.1.29；2001.8

―14―

第２変数ｙの積分区間],[dc の下限ｃと上限ｄを設定する。パラメータ xw_intvl

と yw_intvlは、それぞれ変数ｘとｙの区間を分割していったときに、それぞれ
の小区間の長さの最大値の基準を設定する。パラメータ accは精度、zerovはゼ
ロとみなす計算値を指定するものである。

被積分関数は、最後のパラメータｆに指定する。型 TDInregralFunc は、次
のように宣言されている。

 type TDIntegralFunc = function(x, y : Extended) : Extended;

関数 AdaptiveGLDblによって次の２重積分

 8/)/1()sin(21

1

2/

0
π

π
eedydxyeyx x −=−∫ ∫−
 （６）

を計算するプログラムが PDAdapGL.dprである。
 被積分関数を

 function CheckFV(x, y : extended) : extended;

 begin

 CheckFV:=x*sin(y)-y*exp(x);

 end;

と宣言して、次のように AdaptiveGLDblを呼出している。

 v:=AdaptiveGLDbl(-1.0, 1.0, 0.0,pi/2, 0.5, 0.5,

1.0e-15, 1.0e-17, CheckFV);

プログラムPDAdapGL.dprを実行して表示されるフォームのGOボタンのク
リックで積分の計算が始まり、図６のように計算結果が表示される。積分の計

算結果はフォーム上に積分値として表示されている。フォームには（６）式の

右辺の値も正しい値として表示されている。

岡本安晴 2001.1.29；2001.8

―15―

図６ ∫ ∫−
−

1

1

2/

0
)sin(

π
dydxyeyx x の計算

２重積分（積分区間が矩形でない場合）

関数 AdaptiveGLDblでは、積分の領域が矩形になっている。次に、ｙの積分
区間がｘの関数になっている

 ∫ ∫
b

a

xr

xr
dydxyxf

)(

)(

2

1

),(（７）

の形の積分の計算について考える。

（７）式の場合は、

 ∫=
)(

)(

2

1

),()(
xr

xr
dyyxfxg （８）

とおいて、（８）式の計算と次の（９）式

 ∫
b

a
dxxg)(（９）

の計算の２段階に分けて行う。（８）式および（９）式の計算は、いずれもガウ

ス・ルジャンドルの積分公式を基とした適応的方法によって行う。（８）式の計

算のときにｘを固定するが、このｘの値をオブジェクトのコンポーネントとし

て管理することにする。この方法によって（７）式の積分を計算するためのク

ラス型 TDIntを、ユニットファイル UIntegral.pas に宣言した。
クラス型TDIntでは、（８）式でのｘの値を保持するコンポーネントxgの他、
被積分関数),(yxf を保持する TDIntegralFunc型のコンポーネント fd、ｙに関
する積分区間を与える関数 1rおよび 2r を保持する TIntegralFunc 型のコンポー
ネント YLBおよび YUB、および（８）式の関数)(xg を与えるメソッド f2など

が宣言されている。

この２重積分の計算を行うためのクラス型 TDInt のオブジェクトは、関数
DblGLの実行によって生成される。DblGLの関数ヘッダーは次のようになって

岡本安晴 2001.1.29；2001.8

―16―

いる。

 function DblGL(xa, xb : extended;

 GD : TDIntegralFunc;

 ry1, ry2 : TIntegralFunc;

 xw_intvl, yw_intvl,

 acc, // >= 1.0e-16

 zero : extended) : extended;

 第１、第２パラメータ xaと xbには、第 1変数ｘの積分区間],[ba の下限ａと
上限ｂを設定する。第３パラメータには被積分関数),(yxf を設定する。ry1 と
ry2には、第２変数ｙの積分区間を与える関数 1rと 2r を設定する。xw_intvlおよ

び yw_intvlは、それぞれ変数ｘおよびｙの積分区間の分割における長さの最大
値を与える基準値を設定する。適応的方法で積分区間が分割されるとき、分割

された区間の長さがこの基準値より短くなるまで分割が繰り返される。acc と
zeroには、精度と計算値をゼロとみなす基準値を設定する。
次の積分

 ∫ ∫ =






 −−
−1

0

1

0

22

6
1

2 π
dxdyyx

x
 （１０）

の計算を行っているプログラム PDIntegralVY.dprでは、被積分関数および第２
変数ｙの積分区間の下限と上限を与える関数が次のように宣言されている。

function CheckFV(x, y : extended) : extended;

 begin

 CheckFV:=sqrt(1-sqr(x)-sqr(y));

 end;

function ryV1(x : extended) : extended;

 begin

 ryV1 := 0.0;

 end;

function ryV2(x : extended) : extended;

 begin

 ryV2 := sqrt(1-sqr(x));

 end;

岡本安晴 2001.1.29；2001.8

―17―

上の宣言に基づいて２重積分（１０）式の値を求めるため、関数 DblGLが以
下のように呼出されている。

 v:=DblGL(0.0, 1.0, CheckFV, ryV1, ryV2,

0.5, 0.5, 1.0e-11, 1.0e-14);

 関数 DblGLの実行により、TDInt型のオブジェクトが生成されて２重積分の
計算が行われる。TDInt 型のオブジェクトは自動的に生成・廃棄されるので、
関数 DblGLの呼び出しにおいて、このオブジェクトの管理を意識する必要はな
い。

プログラム PDIntegralVY.dpr を実行して表示されるフォーム上のＧＯボタ
ンをクリックすると上の関数 DblGLによる計算が行われ、計算結果がフォーム
上のラベルの Caption に設定・表示される。積分値である式（１０）の右辺の
値 6/π もフォーム上のラベルの Captionに正しい値として設定･表示される（図
７）。

プログラム PDIntegralVY.dprは、フォルダ integralfilesにある。

図７ 関数 DblGL による計算例

岡本安晴 2001.1.29；2001.8

―18―

参 考 文 献

（１）川上一郎「数値計算」、Pp.201、岩波書店、1989.
（２）R.L.Burden and J.D.Faires. Numerical Analysis, 3rd ed., Pp.676, PWS
 Publishers, 1985.
（３）岡本安晴「Delphiプログラミング入門」、Pp.207、CQ出版株式会社、1997．
（４）岡本安晴「Delphiで学ぶデータ分析法」、Pp.274、CQ出版株式会社、1998．
（５）日本数学会編集「岩波数学辞典」、第３版、Pp.1609、岩波書店、1985.
（６）W.H.Press, B.P.Flannery, S.A.Teukolsky and W.T.Vetterling. Numerical
 recipes in Pascal, Pp.759, Cambridge University Press, 1989.

