
岡本安晴 2001.1.31；2001.8

―1―

行列の計算‐１

加減乗算・逆行列・行列式・階数

行列とベクトル

数値を次の形









7 2 5
2 1 3

のように、長方形の形に並べたものは行列と呼ばれている（１）、（２）。行列は () あるいは []

で囲んで表す。行列における横の並びを行、縦の並びを列という。上の行列の場合、2つの

行

()2 1 3 と ()7 2 5

あるいは、３つの列









5
3
、 








2
1
 と 








7
2

から成り立っていると考えられる。

上のように、２行３列からなる行列は(2,3)型の行列（１）、あるいは２×３行列（２）という

ように呼ぶ。

一般に、ｍ行ｎ列からなる行列は(m,n)型の行列、あるいはｍ×ｎ行列などという。

行列の１つ１つの数値は、行列の成分（１）あるいは要素（３）と呼ばれている。第ｉ行、第

ｊ列にある成分は(i,j)成分などと呼ぶ。成分は、数値を値とする変数、あるいは関数のと

きもある。

行列Ａの(i,j)成分を ija で表わすと、



















=

mnmm

n

n

aaa

aaa
aaa

A

21

22221

11211

L
M

L

L

と書ける。あるいは、簡単に

()ijaA =

と書くこともある。

一般に、行列は大文字、成分は小文字で表わされる。

（ｍ,1）型の行列は縦ベクトル、あるいは列ベクトルということがある。ベクトルは太

岡本安晴 2001.1.31；2001.8

―2―

い小文字で表わされる。列ベクトルxの(i,1)成分を ix で表わすと



















=

mx

x
x

M
2

1

x

となる。

(1,n)型の行列は横ベクトル、あるいは行ベクトルと呼ばれることがある。行ベクトルyの

(1､j)成分を jy で表わすと

()nyyy L21=y

となる。

行列と配列

行列をプログラムで扱うときは配列が用いられる。

(m,n)型の行列 Aは、配列ａを

var a : array[1..m,1..n] of Extended;

と宣言しておけば、行列Ａの(i,j)成分 ija を配列ａの要素 a[i,j]で表わすことによって、

行列Ａを配列ａで表わすことができる。

(n,1)型の列ベクトルa、あるいは(1,n)型の行ベクトルbは、１次元の配列を

var a, b : array[1..n] of extended;

と宣言しておいて、列ベクトルaの(i,1)成分 ia に配列ａの要素 a[i]、行ベクトルbの(1,i)
成分 ib に配列ｂの要素 b[i]を対応させると、列ベクトルaは配列ａで、行ベクトルbは配

列ｂで表わすことができる。

いろいろな型（サイズ）の行列を扱うときは、最大のサイズ、すなわち、行数と列数の

最大値あるいはそれより大きい値で配列を宣言しておくと、プログラムでの型の管理が簡

単になる。例えば、列数および行数の最大値を NDim とするとき、行列を表わす配列の型

を

type TMat = array[1..NDim,1..NDim] of Extended;

岡本安晴 2001.1.31；2001.8

―3―

と宣言しておき、行列を表わす配列は

var a, b, c : TMat;

というように宣言しておく。このとき、Ndimを超えない正整数mと nに対して、ａは(m,n)

型の行列を表すことができる。ａの要素 a[i,j]の添字は mi ≤≤1 、 nj ≤≤1 の範囲の値と

なり、配列の左上の部分が行列の大きさに合わせて用いられる。

行列の特殊なものとしての行（列）ベクトルは、２次元の配列ではなく１次元の配列を

用意して用いる方が自然である。すなわち、

type TVector = array[1..NDim] of Extended;

というように宣言する。

行列の加減算

２つの行列が同じ型のときは、それらの和あるいは差が定義される。和あるいは差は、

対応する位置にある要素同士の和と差で与えられる。行列









7 2 5
2 1 3

と次の行列









3 2 6
1 7 5

との和は









=








+++
+++

=







+








10 4 11
3 8 8

37 22 65
12 71 53

3 2 6
1 7 5

7 2 5
2 1 3

で、差は









−

−−
=








−−−
−−−

=







−








4 0 1
1 6 2

37 22 65
12 71 53

3 2 6
1 7 5

7 2 5
2 1 3

で与えられる。

一般に、(m,n)型の行列

)(ijaA = と)(ijbB =

の和および差は、

)(ijij baBA +=+

および

岡本安晴 2001.1.31；2001.8

―4―

)(ijij baBA −=−

で与えられる。

行列ＡとＢが配列ａとｂで表わされているとき、その和および差を表わす配列ｃおよび

ｄは以下のようにして求めることができる。

＜和＞

 for i:=1 to m do

 for j:=1 to n do

 c[i,j]:=a[i,j]+b[i,j];

＜差＞

 for i:=1 to m do

 for j:=1 to n do

 d[i,j]:=a[i,j]-b[i,j];

スカラー積

行列に対して数値をスカラーという。数値ｓと行列Ａの積 sAはスカラー積といい、各成
分をｓ倍したものである。すなわち、

)()(ijij saassA ==

で与えられる。

したがって、積 sAを表わす配列をｐで表わすと、ｐの各要素の値を設定するプログラム
は次のようになる。

＜スカラー積＞

 for i:=1 to m do

 for j:=1 to n do

 p[i,j]:=s*a[i,j];

内積と長さ（ノルム）

 行ベクトルxと列ベクトル yの積は内積xyとして以下のように与えられる。

() nn

n

n yxyxyx

y

y
y

xxx +++=



















= L
M

L 2211
2

1

21
xy

行列 Aの(i,j)成分を(j,i)成分とする行列は Aの転置行列といい、 'A 、 tA あるいは TA など
で表わされる。この記号を用いると、行ベクトルxあるいは列ベクトルyの自分自身との積

岡本安晴 2001.1.31；2001.8

―5―

が次のように与えられる。

()() () 22
1

1

111 ' n

n

nnn xx
x

x
xxxxxx ++=
















=′= LMLLLxx

() 22
1

1

1

11

 ' n

n

n

nn

yy
y

y

yy
y

y

y

y

++=















=
















′
















= LMLMMyy

行（列）ベクトルの自分自身との積の平方根をベクトルの長さといい、記号 で表わす。

'xxx = 、 yyy '=

長さの概念を一般的に拡張したものはノルムと呼ばれている。 x や y はノルムともい

う。

行列の積

 行列 Aと Bの積は、Aの列数と Bの行数が等しいときに定義されている。

行列 A が(p､q)型、B が(q､r)型であるとする。行列 A および B を、それぞれ行ベクトル

および列ベクトルで区切って表わす。すなわち、





















=





















=

p
pqpp

q

q

aaa

aaa

aaa

A

a

a
a

M

L

M

L

L

2

1

21

22221

11211

および

()r

qr

r

r

qq b

b
b

b

b
b

b

b
b

B bbb L
M

L
MM 21

2

1

2

22

12

1

21

11

=





















=

というように、行ベクトル ia および列ベクトル kb を並べたものとして表わす。ここで、

岡本安晴 2001.1.31；2001.8

―6―

()iqiii aaa L21=a および





















=

qj

j

j

j

b

b

b

M
2

1

b

である。

このとき、Ａと Bの積Ｃは(p､r)型の行列となり、その(i,j)成分 ijc は行ベクトル ia と列ベ

クトル jb との内積で与えられる。すなわち、

()




















=





















=





















=

prpp

r

r

rppp

r

r

r

p ccc

ccc
ccc

AB

21

22221

11211

21

22212

12111

21
2

1

L
M

L
L

L
M

L
L

L
M

bababa

bababa
bababa

bbb

a

a
a

ここで、

jiijc ba=

である。

上の積の(i,j)成分を与える式は次のようにも書ける。

∑
=

=
q

k
kjikij bac

1

したがって、行列 Aと Bの積 Cを求めるプログラムは次のようになる。

 for i:=1 to p do

 for j:=1 to r do

 begin

 c[i,j]:=0.0;

 for k:=1 to q do

 c[i,j]:=c[i,j]+a[i,k]*b[k,j];

 end;

ここで、行列 A,Bおよび Cを配列ａ、ｂおよびｃで表わしている。

行列の演算のためのユニットファイル UMatCalc.pas

行列の加減算や積を計算するための関数をユニットファイルUMatCalc.pasに宣言した。

岡本安晴 2001.1.31；2001.8

―7―

UMatCalc.pass には加減算と積を求める関数の他に、この解説の末尾にあるリスト１に挙

げられている関数や手続きが interface部に宣言されている。

行列は TMatCalc 型として宣言されていまる。TMatCalc 型はユニットファイル

UTypeDefMat.pasにおいて次のように宣言されている。

const NDimMat = 100;

type TMatCalc = array[1..NDimMat,1..NDimMat] of Extended;

NDimMatは、プログラム中で扱う行列のサイズ以上の値に設定しておく。多種類のサイ

ズの行列を用いるときは、最大のサイズ以上であるようにしておく。

ユニット UTypeDefMatは、ユニット UMatCalc の関数あるいは手続きを使用するユニ

ットの uses節でも使用を宣言しておく。

ユニットUMatCalcの関数を用いて配列ａとｂの和を求めるときは

c := MatAdd(a, b, m, n : Longint);

配列 dと bの積を求めるときは

e := MatMul(d, b, L, m, n : Longint);

というようにする。ここで、ａ、ｂ、ｃ、ｄ および ｅ は、TMatCalc 型の配列で、それ

ぞれ(m,n)型、(m,n)型、(m,n)型、（L,m）型 および （L,n）型の行列を表わすものとする。

TMatCalc型の配列のサイズNDimMatは、ｍ，ｎ，Ｌ以上の数を設定しておく。

リスト１に挙げられている関数の使用例を、プロジェクト PCheckMat.dprとして用意し

た。このプロジェクトの実行時のフォームは図１のようになっている。上２つのグリッド

に行列の値を設定してボタンをクリックすると、クリックしたボタンに対応する計算がリ

スト１の関数を用いて行われる。

岡本安晴 2001.1.31；2001.8

―8―

図１ プロジェクト PCheckMat.dpr の実行時のフォーム

ボタン「Add」、「Sub」、「Mul」をクリックすると、それぞれ和、差、積が求められて下

のグリッドに表示される。図１は「Add」ボタンをクリックした場合である。

「Scalar」ボタンをクリックすると、フォーム上部の「ｓ＝」の右側のエディット・コン

ポーネントに設定した数値と、左上の「A=」と表示のあるグリッドに設定された行列との

スカラー積が計算されて、下のグリッドに表示される。

「Inv」、「Inv(S)」、「Det」、「Rank」ボタンのクリックで、それぞれ逆行列（ガウスの消

去法）、逆行列（Cholesky分解の利用）、行列式、階数の計算が行われる。これらについて

は後で説明する。

３次元の回転

行列の積を用いた例として、３次元空間での回転を表わすプログラムを作成した。

回転は、オイラーの角と呼ばれる３つの角、θ 、φ、ψ 、によって次のように表わすこ

とができる（１）。

Y 軸の回りの角θの回転を θY 、Z 軸の回りの角φおよび角ψ の回転を φZ および ψZ で表

わすと、回転 Tは３つの回転の積

 ψθφ ZYZT =

として書き表すことができる。すなわち、

岡本安晴 2001.1.31；2001.8

―9―















 −

















−













 −
=

1 0 0
0 cos sin
0 sin cos

cos 0 sin
0 1 0

sin 0 cos

1 0 0
0 cos sin
0 sin cos

ψψ
ψψ

θθ

θθ
φφ
φφ

T

と書ける。

プログラム PRotation.dpr では、オイラーの角から上式によって回転 T を求め、Image

コンポーネントに描かれている立方体を回転 T によって回転している。実行開始時のフォ

ーム（図２）において、オイラーの角を設定してから「GO」ボタンをクリックする。

図２ PRotation.dpr の実行開始時の画面

設定されたオイラーの角に基づいて回転 Tが計算され、OnTimerイベントの生起によって

回転 Tによる立方体の回転と回転後の立方体の再描画が行われる。

図３ 回転中の立方体

OnTimerイベントは「STOP」ボタンがクリックされるまで設定された intervalで生起し

続けるので、立方体もそれに合わせて回転を続けることになる（図３）。

岡本安晴 2001.1.31；2001.8

―10―

行列式と階数

(n,n)型の行列は正方行列という。

正方行列

()n

nnnn

n

aaa

aaa

A aaa L
L
M

L

21

21

11211

 =















=

に対して、次式

∑ ⋅⋅⋅⋅=
σ

σσσσ nnn aaa)(2)2(1)1(21 sgn)det(LLaaa

で与えられる値を行列 Aの行列式という。ここで、

)}(,),2(),1({ nσσσ L

は

},,2,1{ nL

を並べかえたものであり、∑
σ

 は、この並べかえ方の全ての方法についての和であること

を表わす。 σsgn は、並べかえ方σ を、対(i,j)の並べかえの組み合わせ（積）で表わしたと

き、偶数個の対の並べかえの積で表わされるとき＋１、奇数個の対の並べかえの積で表わ

されるとき－1の値をとるものである。並べかえ方σ は、偶数個の対の並べかえの積で表わ
されるか、奇数個の対の並べかえの積で表わされるかのいずれかである。ある並べかえ方σ
が偶数個の対の積で表わされたり奇数個の対の積で表わされたりすることはない。偶数個

の対の積で表されるとき、他の対の組み合わせの積で表しても常に偶数個の積になる。奇

数個の場合も同様である。

行列式は)det(21 naaa L で表わしたり、 A で表わしたりする。

行列式の絶対値)det(21 naaa L は、ベクトル 1a 、 2a 、・・・、 na で張られる平行体の体

積（面積）を表わす。行列 Aが（２，２）型のときは、２つのベクトル 1a と 2a で張られる
平行四辺形の面積を表す。（３，３）型のときは、３つのベクトル 1a 、 2a と 3a で張られる

平行六面体の体積を表わす。行列式の符号はベクトルが右手系であれば正、左手系であれ

ば負となる。

行列 Aが（２，２）型であるとき、 1a と 2a が同一直線上にあれば 1a と 2a で張られる平
行四辺形の面積は０である。行列 Aが（３，３）型のとき、 1a 、 2a と 3a が同じ平面上に

あれば体積は０である。

岡本安晴 2001.1.31；2001.8

―11―

行列 Aの列ベクトル 1a 、 2a 、・・・、 na がｋ次元の空間内にある（ｋ次元空間を張る）

とき、行列 Aの階数はｋであるといい、

kAr =)(

などと表わします（２）。

 行列 Aの階数)(Ar がｋであるとき、行列

()


















==

n

nA

b

b
b

aaa
M

L

2

1

21

の行ベクトル 1b 、 2b 、・・・、 nb もｋ次元空間内にある（ｋ次元空間を張る）。すなわち、

行列の列ベクトルと行ベクトルの張る空間の次元数は同じで、その次元数が階数である。

 行列式と階数を求める関数 MatDetと MatRnkをユニットファイルUMatCalc.pasに用意

した。MatDetのヘッダーは次のようになっている。

 function MatDet(a : TMatCalc;

 n : Longint;

 zero : Extended) : Extended;

 第１パラメータａに行列式を求める行列を表わす配列、第２パラメータｎに行列の型

(n,n)の値ｎを設定する。第３パラメータ zero は計算結果をゼロとみなす基準値である。

これは、MatDet では行列式を掃出し法を用いて求めているが、そのときに成分の絶対値が

この値 zeroより小さいときは０であると判定している。

階数を求める MatRnkのヘッダーは次のようになっています。

 function MatRnk(a : TMatCalc;

 m, n : Longint;

 ZeroV : Extended) : Longint;

行列 A の階数は、行列が正方行列でないときも列ベクトル、あるいは行ベクトルの張る

空間の次元数として与えられる。行列の型(m,n)を表す２つの数値、行数ｍと列数ｎ、を第

２、第３パラメータに設定する。０と判定するときの基準値は第４パラメータ ZeroV に設

定する。

MatDetおよび MatRnkの使用例もプロジェクト PCheckMat.dpr に用意してある。図１のフ

ォームで「Det」ボタンをクリックすると、「A =」の表示のある左上のグリッドに設定され

た行列の行列式が「Det」ボタンの右側のエディットコンポーネントに表示される。「Rank」

岡本安晴 2001.1.31；2001.8

―12―

ボタンのクリックのときも同様に、「A =」の表示のある左上のグリッドに設定された行列

の階数が「Rank」ボタンの右側のエディットコンポーネントに表示される。

逆行列

(n,n)型の正方行列 Aの階数がｎであるとき、(n,n)型の正方行列Ｂが存在して

 IABBA == （１）

が成り立つ。ここで、























=

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

L
L
O

L
L

I

である。I のように、行列の対角線上の成分のみが１で、他の成分は０である行列は単位行

列と呼ばれている。（１）式におけるBを Aの逆行列といい、 1−A で表す。（１）式を 1−A を
用いて書き表すと

IAAAA == −− 11

となる。

(n,n)型の行列 Aの階数がｎで逆行列が存在するとき、Ａは正則行列であるという。

いま、単位行列 I を次のように行ベクトルに分けて表す。
















=

n

I
e

e
M
1

ここで、 ie はｉ番目の要素が１で、他の要素は０である行ベクトルを表す。
次の ie を用いて表される3つのタイプの(n,n)型の正則行列),(jiPn 、);(ciQn 、);,(cjiRn

は基本行列と呼ばれている。

岡本安晴 2001.1.31；2001.8

―13―









































=

+

−

+

−

n

j

i

j

i

j

i

n jiP

e

e
e

e

e
e
e

e

M

M

M

1

1

1

1

1

),(、





























=

+

−

n

i

i

i

n cciQ

e

e
e

e

e

M

M

1

1

1

);(、





























+=

+

−

n

i

ji

i

n ccjiR

e

e
ee

e

e

M

M

1

1

1

);,(

すなわち、),(jiPn は単位行列 I の第ｉ行と第ｊ行を入れ換えたものである。









































=

1

1
01

1

1
10

1

1

),(

O

L

MOM

L

O

jiPn

);(ciQn は単位行列 I の(i,i)成分をｃで置き換えたものである。





























=

1

1

1

1

);(

O

O

cciQn

);,(cjiRn は単位行列 I の(i,j)成分をｃで置き換えたものである。

岡本安晴 2001.1.31；2001.8

―14―





























=

1

1

1

1

);,(

O

MO
L

O
c

cjiRn

基本行列),(jiPn を行列Ａの左から掛けたもの AjiPn),(は行列Ａのｉ行とｊ行を入れ換

えたものになる。すなわち、





























=





























=

n

i

j

n

j

i

nn jiPAjiP

a

a

a

a

a

a

a

a

M

M

M

M

M

M

),(),(

11

となる。

基本行列);(ciQn を行列Ａの左から掛けたものは行列Ａのｉ行をｃ倍したものになる。す

なわち、





























=





























=

+

−

+

−

n

i

i

i

n

i

i

i

nn cciQAciQ

a

a
a

a

a

a

a
a

a

a

M

M

M

M

);();(

1

1

1

1

1

1

となる。

基本行列);,(cjiRn を行列Ａの左から掛けたものは行列Ａのｊ行のｃ倍をｉ行に加えた

ものになる。すなわち、

岡本安晴 2001.1.31；2001.8

―15―





























+

=





























=

n

j

ji

n

j

i

nn

c

cjiRAcjiR

a

a

aa

a

a

a

a

a

);,();,(

11

M

M

M

M

M

M

となる。

基本行列のこれらの性質はガウスの消去法（３）、（４）における行の操作に対応しているので、

行列Ａの左から適当な基本行列を掛けていくことによりガウスの消去法を行うことができ

る。すなわち、求める逆行列 1−A をＸとおき、

IAX =

の左からガウスの消去法の操作に対応して適当な基本行列 1E 、・・・、 pE を順番に掛けて

いくと























′

′′
′′′

=

−

1 0 0

 1 0

 1 0

 1

,1

223

11312

1

L

L
O

L

L

L

nn

n

n

p

a

aa

aaa

AEE

BIEEAXEE pp == 11 LL （２）

と変形できる。ここで、 1EEB p L= とおいている。

 式（２）は

BX
a

aa

aaa

nn

n

n

=























′

′′
′′′

−

1 0 0

 1 0

 1 0

 1

,1

223

11312

L

L
O

L

L

という形なので、上式はＸについての方程式とみて、第ｎ行から順番に ijx の値を求めるこ

岡本安晴 2001.1.31；2001.8

―16―

とができる（３）、（４）。

すなわち、
















=

n

X
x

x
M
1

、
















=

n

B
b

b
M
1

とおくと、式（２）は次式の形になる。























=













































′

′′
′′′

−

nn

nn

n

n

b

b

x

x

a

aa
aaa

MM

LL
OM

MOOOM
L
L 11

,1

223

11312

100
1

10
1

上式を行ごとに表すと式（2.1）～（2.ｎ）の連立方程式になる

112121 bxxx =′++′+ nnaa L （2.1）

223232 bxxx =′++′+ nnaa L （2.2）

・

・

・

1,11 −−− =′+ nnnnn a bxx （2.n-1）

nn bx = （2.n）

上の連立方程式の解 ix は、まず式（2.n）により nx が与えられ、 nx と式（2.n-1）より 1−nx

が与えられ、・・・、 nx ～ 1+ix と式（2.i）より ix が与えられ、・・・、 nx ～ 2x と式（2.1）

より 1x が与えられるという形で求めることができる。
上の方法によって逆行列を求める手続きを Mat_Inv_Gauss としてユニットファイル

UMatCalc.pas に用意している。ユニットファイル UMatCalc.pas では、この手続き

Mat_Inv_Gaussを用いて求めた逆行列を値とする関数 MatInv を用意した。MatInvのヘッダ

ーは次のようになっている。

 function MatInv(a : TMatCalc;

 n : Longint;

 ZeroV // ゼロの基準値

 : Extended) : TMatCalc;

岡本安晴 2001.1.31；2001.8

―17―

第１パラメータに逆行列を求める行列を表わす配列を、第２パラメータに行列の型(n,n)を

与える値ｎを設定する。第３パラメータには０とみなす基準値を設定する。この値は、

MatInv 内で逆行列を計算するために呼び出す手続き Mat_Inv_Gauss において数値を０とみ

なす基準値の実パラメータとして用いられている。これは、計算結果が理論的には０であ

っても実数型の有効桁数の制限のために０にはならない場合に対処するためのものである。

行列Ａが対称行列のときは Cholesky 分解を用いて逆行列を求めることができる。ここで、

行列Ａが対称行列であるとは、Ａの転置行列 'A が自分自身に等しい、すなわち、

'AA =

が成り立つことをいう。これを Aの要素の関係で表すと

jiij aa =

となる。

行列Ａが対称行列のときは、次の Cholesky 分解

 'SSA = 、 （３）
ただし、























=

−

−−−

nnnnnn

nnn

ssss

ss

ss
s

S

0

0 0
0 0 0

1,21

1,11,1

2221

11

L

L
O

L
L

、

を行って、逆行列を
111)'(−−− = SSA

によって求めることができる。

Cholesky 分解（３）式は、

∑
=

=
i

j
ijijii ssa

1

および

 ∑
=

=
i

j
kjijik ssa

1

 ik >

の関係式から求めることができる（４）。

岡本安晴 2001.1.31；2001.8

―18―

まず、 1=i の場合から計算を始める。このとき、

111111 ssa = 、 1111 kk ssa =

であるので、

1111 as = 、
11

1
1 s

a
s k

k =

となる。

i-1 列までの jks , が求まったとすると、次式

∑
−

=

−=
1

1

i

j
ijijiiii ssas 、

ii

i

j
kjijik

ki s

ssa
s

∑
−

=

−
=

1

1

よりｉ列の kis が求まる。

上の Cholesky 分解を用いた方法（４）で逆行列を求める手続き Mat_Inv_S をユニットファ

イル UMatCalc.pas に用意した。Cholesky 分解を用いて求めた逆行列を値とする関数

MatInvSも UMatCalc.pas に用意した。ヘッダーは

 function MatInvS(a : TMatCalc;

 n : Longint;

 ZeroV : Extended) : TMatCalc;

となっていて、MatInvの場合と同じである。

関数 MatInvと MatInvSの使用例もプログラム PCheckMat.dpr に含めた。

「Inv」ボタン（図１）のクリックで「A＝」と表示のある左上のグリッドに設定された

行列の逆行列が関数 MatInv の呼び出しによってガウスの消去法で求められ、下のグリッド

に「Inv(A)＝」のタイトルとともに表示される。右上のグリッドには左上に設定された行

列とその逆行列との積が表示される。この行列は理論的には単位行列 I であるべきものであ
るが、計算精度の限界のため０となるべき(i,j)成分に０でない非常に小さい値が表示され

ることがある。計算では Extended 型を用いているが、Extended 型の精度は約１９～２０桁

である。

「Inv(S)」ボタン（図１）をクリックすると「Ａ ＝」と表示のある左上のグリッドに設

定されている行列の値Ａから対称行列 'AA が求められて「Ａ ＝」の表示のあるグリッド
に表示され、その逆行列が MatInvS によって算出される。算出した逆行列は下のグリッド

に「Inv(A) ＝」のラベルとともに表示されます。右上のグリッドには行列とその逆行列と

の積 1)')('(−AAAA が表示される。この積の値も理論的には単位行列 I であるべきものであ

岡本安晴 2001.1.31；2001.8

―19―

るが、計算精度の限界のため０となるべき(i,j)成分が０でない非常に小さい値になること

がある。

単回帰分析

逆行列の使用例として単回帰分析のプログラム PAnal2Vars.dpr を作成した。

単回帰分析とは、２変量のデータ),(11 yx 、・・・、),(NN yx が与えられたとき、各 iy を

ix で最もよく説明する１次式を求めるものである。いま、1次式を

baxy +=

で与えたとき、 iy を上の１次式で説明するときの誤差の２乗和を SS で表わすと、

{ }∑
=

+−=
N

i
ii baxySS

1

2)(

となる。

iy を ix で最もよく説明する１次式を SS を最小にするものとして与えるときのａとｂの

値は、SSのａおよびｂによる偏導関数を０にするものとして求めることができる。

偏導関数は次のように与えられる。

{ }∑
=

−+−=
∂

∂ N

i
iii xbaxy

a
SS

1

)()(2

 ∑
=

−−−=
N

i
iiiii bxxaxxy

1

)(2

 { }∑
=

−+−=
∂

∂ N

i
ii baxy

b
SS

1

)1()(2

 ∑
=

−−−=
N

i
ii baxy

1

)(2

上の２つの偏導関数を０とおいて次式を得る。

 ∑∑∑
===

+=
N

i
i

N

i
ii

N

i
ii xbxxaxy

111

 ∑∑∑
===

+=
N

i

N

i
i

N

i
i bxay

111

1

ずなわち、

岡本安晴 2001.1.31；2001.8

―20―



































=



















∑∑

∑∑

∑

∑

==

==

=

=

b

a

x

xxx

y

xy

N

i
i

N

i
i

N

i
ii

N

i
i

N

i
ii

1

N

1i1

11

1

1
 （４）

したがって、





































=
















∑

∑

∑∑

∑∑

=

=

−

==

==

N

i
i

N

i
ii

N

i
i

N

i
i

N

i
ii

y

xy

x

xxx

b

a

1

1

1

N

1i1

11

1

 （５）

としてａとｂが求まる。

いま、



















=

Ny

y
y

M
2

1

y 、



















=

1

1
1

2

1

Nx

x
x

X
M
、 








=

b
a

β

とおくと、（４）式は

 βXXX '' =y

（５）式は

 y')'(1 XXX −=β

と書る。

また、

 baxy ii +≈

はまとめて

 βX≈y

と書ける。ここで、記号 ≈ は近似式であることを表わす。
単回帰分析を行うプログラム PAnal2Vars.dpr を実行すると図４のようなフォームが表示

される。グリッドのセルに ix と iy の値を設定して、「散布図」ボタンをクリックすると単回
帰分析が行われる。「計算」ボタンをクリックすると ix および iy それぞれの平均値や標準偏

差などが計算される。

岡本安晴 2001.1.31；2001.8

―21―

図４ プログラム PAnal2Vars.dpr の実行開始時のフォーム

グリッド内のセルのデータの設定は、セルをクリックしてアクティブにしてからキーボ

ードで入力する。データ設定用のセルをクリックして「追加」ボタンをクリックするとそ

のセルの下に新しい行が挿入される。「削除」ボタンをクリックすると、そのセルの行が削

除される。グリッド内のデータの設定は空のセルがないように全てのデータ設定用セルに

値を設定する（図５）。グリッドの上のラベルの設定用エディットコンポーネントには２つ

の変量 ix および iy のラベルを設定する。設定された文字列は散布図（図７）の出力で用い

られる。

岡本安晴 2001.1.31；2001.8

―22―

図５ グリッドに設定されたデータ

設定したデータは、「保存」ボタンのクリックでファイルに保存することができる。ファ

イル名は、「保存」ボタンのクリックで表示されるダイアログボックスにおいて設定する。

このファイルはテキストファイルとして書き出されるので、テキストエディタで開いて見

ることもできる。

「保存」ボタンのクリックで保存したファイルは、「読出」ボタンのクリックで読み込む

ことができる。読み込むファイルの名前は、「読出」ボタンのクリックで表示されるダイア

ログボックスで設定する。

図６ 「散布図」ボタン（図５）のクリックで表示されるフォーム

図５の状態で「散布図」ボタンをクリックすると、図６のようなフォームが表示される。

「描画」ボタンをクリックすると、出力用ファイル名の設定を求めるダイアログボックス

が表示される。ここで設定された名前のファイルに回帰分析の計算結果が出力される。

ダイアログボックスにファイル名を設定すると散布図の描かれたフォームが表示され、

岡本安晴 2001.1.31；2001.8

―23―

求められた１次式 baxy += （回帰直線という）のグラフが散布図内に描かれる（図７）。

フォーム上部の「印刷」ボタンをクリックすると散布図がプリンタに出力される。散布図

は印刷用紙が縦長の方向であることを想定して出力されるので、「印刷」ボタンのクリック

で表示されるダイアログボックスにおいて印刷用紙の向きが縦長であることを確認する。

表示されたダイアログボックスにおいて用紙の向きの設定が横長であれば縦長に設定し直

してから「OK」ボタンをクリックする。

図７ 散布図と回帰直線

「閉じる」（図７）、「終了」（図５）ボタンのクリックでプログラムを終了後、「散布図」、

「描画」ボタンのクリックで表示されたダイアログボックスにおいて設定した名前の出力

用ファイルをテキストエディタで開くと、回帰直線の係数ａとｂの値、および ix と iy の相

関係数や決定係数などが書き出されているのを見ることができる。決定係数は相関係数を

２乗したもので、回帰直線がデータ iy の変動をどれぐらい説明しているかを示すものであ

る。詳しくは文献（４）などを参照されたい。

岡本安晴 2001.1.31；2001.8

―24―

参 考 文 献

（１）斎藤正彦「線型代数入門」、Pp.278、東京大学出版会、1966.

（２）J.D.Carroll & P.E.Green. Mathematical tools for applied multivariate

 analysis (revised edition). Pp.376, Academic Press, 1997

（３）戸川隼人「マトリクスの数値計算」、Pp.316、オーム社、1971.

（４）岡本安晴「Delphi で学ぶデータ分析法」、Pp.275、ＣＱ出版社、1998.

岡本安晴 2001.1.31；2001.8

―25―

リスト１ UMatCalc.pasに宣言されている関数

 function MatAdd(a, b : TMatCalc;

 m, n : Longint) : TMatCalc;

 (m,n)型の行列 aと bの和を関数値とする

 function MatSub(a, b : TMatCalc;

 m, n : Longint) : TMatCalc;

 (m,n)型の行列ａとｂの差を関数値とする

 function MatMul(a, b : TMatCalc;

 L, m, n : Longint) : TMatCalc;

 (L,m)型の行列ａと(m,n)型の行列ｂの積を関数値とする

 function MatScl(s : Extended;

 a : TMatCalc;

 m, n : Longint) : TMatCalc;

 行列ａのスカラーｓ倍を関数値とする

 function Transpose(a : TMatCalc;

 m, n : Longint) : TMatCalc;

岡本安晴 2001.1.31；2001.8

―26―

 行列ａの転置行列を関数値とする

 procedure Mat_Inv_Gauss(a : TMatCalc; // a の逆行列を求める

 var b : TMatCalc; // a の逆行列が返される

 n : Longint; // 行列のサイズ

 ZeroV : Extended; // ゼロの基準値

 var ECode // 逆行列が求まれば０を返す

 : Longint);

 ガウスの消去法によって行列ａの逆行列を求め、求めた逆行列をｂに返す手続き

 function MatInv(a : TMatCalc;

 n : Longint;

 ZeroV // ゼロの基準値

 : Extended) : TMatCalc;

 行列ａの逆行列をガウスの消去法で求め、求めた逆行列を関数値とする

 procedure Mat_Inv_S(a : TMatCalc; // a の逆行列を求める

 var b : TMatCalc; // a の逆行列が返される

 n : Longint; // 行列のサイズ

 ZeroV : Extended; // ゼロの基準値

 var ECode // 逆行列が求まれば０を返す

 : Longint);

 行列ａの逆行列を Cholesky 分解を用いて求め、求めた逆行列をｂに返す手続き

岡本安晴 2001.1.31；2001.8

―27―

 function MatInvS(a : TMatCalc;

 n : Longint;

 ZeroV // ゼロの基準値

 : Extended) : TMatCalc;

 行列ａの逆行列を Cholesky 分解を用いて求め、求めた逆行列を関数値とする

 function MatDet(a : TMatCalc;

 n : Longint;

 zero // ゼロの基準値

 : Extended) : Extended;

 行列ａの行列式を関数値とする

 function MatRnk(a : TMatCalc;

 m, n : Longint;

 ZeroV // ゼロの基準値

 : Extended) : Longint;

 (m,n)型の行列ａの階数を関数値とする

