
岡本安晴 2001.2.1;2001.8 

―1― 

行列の計算―２ 

固有値・固有ベクトル・特異値・特異値分解・一般逆行列 

 

スペクトル分解 

例えば、（２，２）型の行列 
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に対して次式が成り立つ。 
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一般に、行列 Aと数（スカラ）λおよび０でないベクトルuの間に次式 
 

                       uu λ=A                         （４） 

 

が成り立つとき、数λを行列 Aの固有値、ベクトルuを行列 Aの固有値λに対する固有ベ
クトルという（１）。 

  （１）式の行列の場合、（２）式より数８が固有値、ベクトル t)1   1( が固有値８に対する

固有ベクトルであることがわかる。（３）式からは、２が固有値、 t)1   1( − が固有値２に対
する固有ベクトルであることがわかる。 

（４）式の関係は、固有ベクトルをα倍したベクトル uα に対しても成り立つ。 
 

)()( uu αλα =A  

 

すなわち、uが固有値λに対する固有ベクトルであるとき、uを任意の数αによってα倍
したベクトル uα も固有値λに対する固有ベクトルになっている。このことから、固有ベク
トルとして長さ１のものをとることがある。（１）式の行列の場合、長さ１の固有ベクトル

は、固有値８に対しては ( )t
21    21 、固有値２に対しては ( )t

21    21 − とすること

ができる。これらの長さ１の固有ベクトルによって（１）式の行列を次のように表わすこ

とができる。 
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したがって、（１）式の行列に(1,2)型の行列（列ベクトル）xを右から掛けたものは次の
ように表せる。 
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（５）式の右辺において、ベクトル ( )21   21 および ( )21   21 − の長さが１なの

で、積 ( )x21   21 と ( )x21   21 − は、ベクトル xのベクトル ( )21   21 および

( )21   21 − への正射影の長さを表わしている（図１）。 

 

図１ 長さ１のベクトルuへのベクトルxの正射影 uxuxuu )( tt =  

 

したがって、 
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は、ベクトルxのベクトル ( )21   21 および ( )21   21 − への正射影を表わしている。

つまり、（５）式は、ベクトルxに（１）式の行列を左から掛けたもの（式（５）の左辺）

を、行列の２つの固有ベクトル ( )21   21 および ( )21   21 − へのベクトル xの正射

影にそれぞれの固有値８および２を掛けたものの和（式（５）の右辺）として表すもので

ある。 

一般に、(n,n)型の実対称行列（行列の成分が実数である対称行列） Aは、ｎ個の固有値

1λ 、・・・、 nλ をもつ。それらの固有値に対応する長さ１の固有ベクトルを 1u 、・・・、 nu

とすると、 

                   t
nnn

tA uuuu λλ ++= L111                      （６） 

が成り立つ。（６）式を行列 Aのスペクトル分解という。固有ベクトル 1u 、・・・、 nu はお
互いに直交しているので、 1u 、・・・、 nu はｎ次元空間の正規直交基底になっている。 

ベクトルxの左から行列 Aを掛けると 

                 xuuxuux t
nnn

tA λλ ++= L111                    （７） 

となる。 xu t
1 、・・・、 xu t

n はベクトルxの 1u 、・・・、 nu への正射影の長さなので、 xuu t
11 、・・・、

xuu t
nn はベクトルxの 1u 、・・・、 nu への正射影を表わす。（７）式によって、ベクトル x

の左から行列 Aを掛けたものは、ベクトルxの 1u 、・・・、 nu への正射影をそれぞれの固
有値 1λ 、・・・、 nλ 倍したものの和として表わされることがわかる。 

（６）式を変形すると、 

t
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となる。 
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  いま、 
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とおくと、（８）式は 

                             tPPA Λ=                       （８ａ） 

 

と書ける。ここで、 1u 、・・・、 nu は互いに直交する長さ１のベクトルなので、 
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となる。すなわち、 

                                tPP =−1                        （９） 

 

が成り立つ。（９）式を満たす行列Pを直交行列という。 
 

 

Power 法 

ベクトルxに実対称行列 Aを繰り返し掛けていくと、（７）式より固有値が最大である固
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有ベクトルに近づくことがわかる。すなわち、 

xuuxuux n
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なので、 121 λλλ >>> L であるとき、 ∞→k とすると 
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となる。ここで、記号   はベクトルの成分の２乗和の平方根（ノルム）を表わす。 

Power 法では、上のことを用いて実対称行列 Aの固有値と固有ベクトルを以下の手順で求
める（２）。 

 

（１） 1←i とおく。 
（２）ベクトル 0x の初期値を適当に設定する。 

（３） 0xy A← 、 0xy←λ 、 yyx
1

1
−← とおく。 

（４） 1x が 0x と同じとみなせる（固有値が正のとき）、あるいは 1x− が 0x と同じとみなせ

る（固有値が負のとき）とき、（５）に跳ぶ。 

1x 、 1x− のいずれも 0x と同じとはみなせないときは、 10 xx ← とおいて（３）に戻

る。 

（５）λを i番目の固有値 iλ 、 1x を iλ に対応する固有ベクトル iu とする。 

（６） Aから固有値 iλ と固有ベクトル iu を除く。すなわち、 t
iiiAA uuλ−← とおく。 

（７） Aが０でないとき、 1+← ii とおいて（２）に戻る。 Aが０になったときはこの手
続きを終了する。 

 

  上の手続きで固有値と固有ベクトルを求める手続き DecompPower をユニットファイル

UMatCalc2.pas に宣言した。手続き DecompPower のヘッダーは次のようになっている。 

 

         procedure  DecompPower( var a        : TMatCalc2; 

                                 n, t_n_eigen : Longint; 

                                 var  n_eigen : Longint; 

                                 var lambda   : TVecCalc2; 

                                 var eigen_vctr : TMatCalc2 ); 
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第１パラメータａに固有値を求める行列、第２パラメータｎに行列ａの大きさ（行列ａ

が(n,n)型であればｎ）を設定する。第３パラメータ t_n_eigen には求める固有値の数を設

定する。実際に求められた固有値の数は第４パラメータ n_eigen に設定された変数に返さ

れる。行列の階数が t_n_eigen に設定された値以上であれば固有値は t_n_eigen に設定さ

れた数だけ求められるが、階数が t_n_eigen に設定された値より小さいときは階数の数の

固有値が０でない固有値として算出される。第５パラメータ lambda と第６パラメータ

eigen_vctr に設定された変数には、求まった固有値とそれに対応する固有ベクトルが返さ

れる。lambda[i]にｉ番目の固有値、eigen_vctr[j,i]にｉ番目の固有値に対応する固有ベ

クトルの第ｊ成分が返される。n_eigen の値より大きいｉに対する lambad[i]と

eigen_vctr[j,i]の値は不定である。仮パラメータにおける型 TMatCalc2 と TVecCalc2 は、

ユニットファイル UTypeDefMat2.pas に宣言されているもので、次のようになっている。 

 

const 

  NDimMat2 = 50; 

 

type 

  TMatCalc2 = array[1..NDimMat2,1..NDimMat2] of Extended; 

TVecCalc2 = array[1..NDimMat2] of Extended; 

 

行列のサイズの最大値は NDimMat2 の値で与えられるので、大きな行列の固有値を計算す

るときは NDimMat2 の値を行列の大きさ以上の数にする。 

手続き DecompPower を用いるときは、ユニット UMatCalc2 と UTypeDefMat2 の使用を uses

節に宣言しておく。 

（１）式の行列の固有値と固有ベクトルは、手続き DecompPower を用いて次のように求

めることができます。 

 

    a[1,1]:=5.0;  a[1,2]:=3.0; 

    a[2,1]:=3.0;  a[2,2]:=5.0; 

    DecompPower( a, 2, 2, n_eigen, lambda, eigen_vctr ); 

 

手続き DecompPower の実行後、n_eigen には２、lambda には２つの固有値８と２、eigen_vctr

には２つの固有ベクトルが返される。 

プロジェクト PCheckPower.dpr は上の計算を行うものである。このプロジェクトを実行

して表示されるフォーム上の「ＧＯ」ボタンをクリックすると計算が始まる。計算の最初

に、計算結果を書き出すテキストファイルの名前の設定を求めるダイアログボックスが表
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示される。適当な名前を設定して「開く(Ｏ)」ボタンをクリックすると計算が始まり、計

算結果が設定したファイル名のテキストファイルに書き出される。このファイルは、プロ

ジェクトの実行終了後にエディタで開いて見ることができる（図２）。 

 

図２ 出力ファイルの表示 

 

図２を見ると、固有値８に対応する固有ベクトルとして ( )t
21    21 、固有値２に対応

する固有ベクトルとして ( )t
21    21 −− が与えられている（ L0.707121 = ）。固有

値８に対応する固有ベクトルは式（４ａ）のものに一致しているが、固有値２に対応する

方は符号が逆になっている。これは、固有値に対応する固有ベクトルを長さ１のものとし

て求めても、その向きは逆のものも許されるからである。すなわち、次式 

uu λ=A  

の両辺に-1 を掛けて 

)()( uu −=− λA  

を得るので、λとuが固有値と固有ベクトルの組み合わせであるとき、λと u− も固有値と
固有ベクトルの組み合わせとなる。 

 

 

ＱＬ法 

Power 法は簡単であるが、計算時間が長くなるという欠点がある。Power 法より速い方法

の１つにＱＬ法がある。ＱＬ法は３重対角行列という形の行列に適用されるものであるの

で、固有値を求める行列を同じ固有値をもつ３重対角行列に変換してからＱＬ法を適用す

る。まず、３重対角行列に変換する方法として、鏡像変換を用いるハウスホルダーの方法

について説明する（３）。 

 

ハウスホルダーの方法（３重対角行列化） 

行列 Aの固有値λとそれに対応する固有ベクトルuは、（４）式、すなわち、 
                              uu λ=A  

を満たす。これは、次式 
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                        0)( =−=− uuu IAA λλ                       （１０） 

をuについての方程式とみたとき、0以外の解 0u ≠ が存在することである。（１０）式が0
以外の解をもつ条件は、 IA λ− の行列式が０であること 
                           0)det( =− IA λ                          （１１） 

である。また、固有値λは方程式（１１）の根になっている。 
いま、正則行列Pに対して 

                             APPB 1−=                          （１２） 

とおく。このとき、 

 

)det()det( 1 IAPPIB µµ −=− −  

                           )det( 11 IPPAPP −− −= µ  

                           ))(det( 1 PIAP µ−= −  

                           )det()det()det( 1 PIAP ⋅−⋅= − µ  

                           )det()det()det( 1 PPIA ⋅⋅−= −µ  

                           )det( IA µ−=  

 

となる。したがって、（１１）式を満たすλは 
 

                    0)det()det( 1 =−=− − IAPPIB λλ             （１３） 

 

を満たす。 

正則行列Pによって（１２）式の関係にある行列 AとBは相似であるといい、（１２）式
の形による行列 AからBへの変換を相似変換という。（１３）式は、相似変換によって固有
値は変わらないことを示している。相似変換として鏡像変換という方法を用いて３重対角

行列に変換する方法がハウスホルダーの方法である。 

鏡像変換（elementary Hermitian transformation）（３）とは、原点を通る平面Ｍを鏡とす

る実像と虚像の関係のように、ベクトルとその変換後のベクトルがＭに関して対称となる

変換である。長さの等しい２つのベクトルxと yに対して、 xを yに変換する鏡像変換は、

行列 

)2( tIM uu−=  

によって 

xuuxy )2( tIM −==  

で与えられる（図３）。ここで、 

yx
yx

u
−
−

=  

である。 
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図３ xからyへの鏡像変換 xuuxuuxuuxy )2()( ttt I −=−−= 、
yx
yx

u
−
−

=  

 

鏡像変換の行列M は 
 

MIIIM ttttttt =−=−=−= uuuuuu 2)(2)2(  

 

が成り立つので対称行列である。また、 

 

IIIIMM tttttt =+−−=−−= uuuuuuuuuuuu 422)2)(2(  

 

がなりたつので、 

MM =−1  

となる。 

鏡像変換を用いて対称行列を３重対角行列に変換する。３重対角行列とは、対角成分と

その隣接成分以外は０であるものである。すなわち、次の形 
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の行列のことである。 
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(n,n)型の実対称行列 Aを３重対角行列に変換するために、まず、第１行と第１列に注目
する。 Aを次のように分割する。 
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上の Aの分割に対応して、次の(n,n)型の行列を考えPとおく。 
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CQ

Qa

Q

tt

b

b

0

0

 

                      





















=
          

            11

QCQQ

Qa t

b

b

                             （１４） 

となる。 

Qを鏡像変換として 

( )ttQ 0      0  Lbb =  

となるように選ぶことができる。すなわち、 
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uu ′−= 2IQ 、 
)00 (

)00 (

L

L

bb

bb
u

−

−
=  

とおく。このとき、 

 

P
Q

P
t

t

t =























=
        

            1 

0

0

 

 

であり、また 









































=
            

            1 

            

            1 

QQ
PP

tt

0

0

0

0

 

                    





















=
QQ

t

       

             1 

0

0

 

                            I=  
 

が成り立つ。すなわち、（１４）式の変換は 

 

APPPAP 1−=  

 

となっていて相似変換である。したがって、固有値は変わらない。また、 

 

               PAPPAP t =)(  

 

が成り立つので、PAPは対称行列である。 
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図４ 第ｉ行、第ｉ列まで３重対角化された実対称行列 

 

いま、実対称行列の３重対角化がｉ行ｉ列まで行われ、図４のような形になっていると

する。続いて、第ｉ＋１行、第ｉ＋１列の３重対角化を次のように行う。 

まず、図４の行列を図５のように分割して表わす。 

 

 
図５ 図４の行列の分割 

 

 

図５の分割に合わせて変換行列も図６のように分割して表わす。 
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図６ 図５の分割に合わせた(n,n)型の変換行列の分割。

I は(,i+1,i+1)型の単位行列、Qは(n-i-1,n-i-1)

型の鏡像変換行列。 

 

 

図５の行列を iA で、図６の行列を 1+iP で表わすと 

                 








































=++ Q

I

C

D

Q
I

PAP

t

iii 0
0

        0   

        
0

       

0
0

11

b

b

 

                          

































=

CQ

Q
D

Q
I

t

   0  

      
0

       

0
0

b

b

 

                          

























=

QCQQ

Q
D t

  0  

      
0

          

b

b

 

Qtb を ( )0    0  Lb となるように変換すると、第 i+1 列と第 i+1 行が３重対角化される。
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このためにQを 

             tIQ uu2−= 、
( )
( )0    0  

0    0  

L

L

bb

bb
u

−

−
=  

とおく。このとき、 111 +++ = iiii PAPA は 

111111 )( ++++++ === iiii
t

iii
t
i APAPPAPA  

が成り立つので、 1+iA は対称行列である。また、 

n
in

iiii
ii I

I
I

QQ
I

Q
I

Q
I

PP =







=








=
















=

−−

++++
++

1

1111
11 0

0
0

0
0

0
0

0
 

 

が成り立つ。ここで、 1+iI 、 1−−inI 、 nI は、それぞれ(i+1,i+1)型、(n-i-1,n-i-1)型、(n,n)

型の単位行列を表わす。したがって、 

1
1
1111 +

−
++++ == iiiiiii PAPPAPA  

は相似変換であり、固有値は変わらない。 1+iA は iA と同じ、すなわち最初の行列 Aと同じ

固有値をもつ。 

上の方法で、第ｎ行、第ｎ列までの３重対角化を行うことによって、実対称行列 Aを同
じ固有値を持つ３重対角行列に変換することができる。 

 

ＱＬ法 

実対称行列が３重対角行列であるとき、ＱＬ法と呼ばれている方法によって固有値を求

めることができる（４）。 

ＱＬ法では、まず、実対称３重対角行列 Aを直交行列Qと下三角行列 Lの積に分解する。 

 

                           QLA =                     （１５） 

 

この分解における直交行列Qによって行列 Aの相似変換 )1(A を次式で定める。 
 

                        AQQA 1)1( −=                  （１６） 

 

相似変換で選られた行列 )1(A に、直交行列と下三角行列の積への分解とそれに基づく相
似変換を行う。この直交行列と下三角行列の積への分解と相似変換を繰り返すとき、相似
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変換で得られる行列は常に実対称３重対角行列であり、繰り返しが進むと対角行列に収束

する。相似変換では固有値は変わらないので、この対角行列は最初の行列 Aの固有値を対
角成分とするものになっている。 

（１５）式より、 

AQL 1−=  

したがって、 

                    LQAQQA == −1)1(              （１６ａ） 

 

となっている。（１６）式の相似変換は、（１５）式の直交行列Qと下三角行列 Lの積によ
る分解において、積の順序を逆にした LQによって与えられることが式（１６ａ）よりわか

る。 

（１５）式の分解は、３重対角行列に対して隣り合う行間の回転を下の行から順番に繰

り返すことによって下三角行列に変換することによって得られる。 

３重対角行列 

          























=

−

−−−−−

nnnn

nnnnnn

aa

aaa

aaa
aa

A

,1,

,11,12,1

232221

1211

              0                               0 

      0                         0 

0                                    0      
0                                          0     

L

L
O

L

L

             （１７ａ） 

に対して、まず(n-1,n)成分を０にすることを考える。第 n-1 行と第ｎ行の回転を表わす行

列 

                  













−=

nn

nnn

I
P

θθ
θθ

cos    sin
sincos

0     

0     
                    （１７ｂ） 

をＡの左から掛けた行列 APn の(n-1,n)成分は 

                     nnnnnn aa θθ sincos ,,1 −−  

となる。３重対角化はこの成分が０になるようにすることなので、これを０とおいて次式

を得る。 

                       n
nn

nn
n a

a
θθ sincos

,1

,

−

=  

上式を 

                      1sincos 22 =+ nn θθ  
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に代入して 

                     1sinsin 22
2

,1

2
, =+

−
nn

nn

nn

a

a
θθ  

                       2
,

2
,1

2
,12sin

nnnn

nn
n aa

a

+
=

−

−θ  

となる。 nθsin の値として 

                       
2
,

2
,1

,1sin
nnnn

nn
n

aa

a

+
=

−

−θ                    （１７ｃ） 

の方をとると 

                        
2
,

2
,1

,cos
nnnn

nn
n

aa

a

+
=

−

θ                   （１８） 

となる。 

（１７ｃ）、（１８）式で与えられる nθ による（１７ｂ）式の回転 nP を（１７ａ）式の行

列 Aの左から掛けると次式のような形の行列が得られる。 
 































=

−−

−−−−

−−−−−−

nnnnnn

nnnn

nnnnnn

n

bbb

bb

aaa

aa

A

,1,2,

1,12,1

1,22,23,2

1211

                   0                     0

0               0                     0

0          0              0

                 

0                                              0    

L

L

L

O

L

 

 

いま、隣り合う行間の回転を順番に適用することによって、第ｎ行目から第ｉ行目まで

の対角成分の右側が次式のように０になったとする。 
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









































=

−−

+++−+

−

−−−−−

+

nnnnin

iiiiii

iiii

iiiiii

i

bbb

bbb

bb

aaa

aa

A

,1,1,

1,1,11,1

,1,

,11,12,1

1211

1

                             0               0

                                                         

0      0              0              0

0                 0                 0              0

0                 0        0        0

           

00

LL

OM

LL

LL

LL

O

L

 

 

上の行列の(i-1,i)成分を０にするために次の回転を考える。 

































−
=

I

I

P
ii

ii
i

                       0              

0    0  cos     sin  0    0
0    0  sin  cos  0    0

0                       

LL

LL

θθ
θθ

 

 

上の行列 iPにおいて cosと sinの置かれている行は第 i-1 行と第ｉ行である。すなわち、

iPは単位行列の第 i-1 行、第ｉ行、第 i-1 列、第ｉ列のところを次の２次元の回転 








 −

ii

ii

θθ
θθ

cos     sin
sin  cos
 

で置き換えたものである。 

iPを 1+iA の左から掛けた行列 1+ii AP の(i-1,i)成分を０とおく。すなわち、 

0sincos ,,1 =−− iiiii ba θθ  

とする。このとき、上式と 

1cossin 22 =+ ii θθ  
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より 

1sinsin 2

,1

,2 =+
−

i
ii

ii
i a

b
θθ  

2
,,1

2
,12sin

iiii

ii
i ba

a

+
=

−

−θ  

を得る。 iθsin の値として 

                        
2
,

2
,1

,1sin
iiii

ii
i

ba

a

+
=

−

−θ               （１９） 

の方をとると、 

                          
2
,

2
,1

,cos
iiii

ii
i

ba

b

+
=

−

θ                  （２０） 

となる。 

（１９）、（２０）式により決まる iθ で与えられる iPを 1+iA の左から掛けると(i-1,i)成分

が０になる。 

iPを 1+iA の左から掛けるという操作を、 AAn =+1 とおいて、 ni = から 2=i まで順番に

実行して得られる次の行列 

 

LAPPP n =L32  

 

は下三角行列（対角成分の上側がすべて０の行列）になる。 

iPは回転を表わす行列で 

t
ii PP =−1  

が成り立つので、 

ttt
nn PPPPPPQ 23

1
32 )( LL == −  

とおくと、 

LAQ =−1  

QLA =  

 

となる。すなわち、（１５）式の分解が得られる。上式に基づいて（１６ａ）式による Aの
相似変換 
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LQAQQA == −1)1(  

を行う。 
)1(A が対称行列であることは、 

( ) ( ) ( ) )1(11)1( AAQQAQQAQQAQQA ttttt
===== −−  

よりわかる。 
)1(A が３重対角行列であることは、 

tt
n PLPLQA 2

)1( L==  

において、 t
nP 、・・・、 tP2 を Lに順番に掛けていった効果を見ていくとわかる。すなわち、

Lは下三角行列であり、 t
nP を Lの右から掛けることは Lの第 n-1 列と第ｎ列の間の回転を

行うことになるので、(n-1,n-1)成分の右側が０でなくなる可能性があるが、それ以外の対

角成分より上側の０はそのままである。したがって、 

              t
n

nnn

nnn

nnn

t
n P

bb

bb

bb

bb
b

LP

































=

−−−

−−−

,1-nn,2-nn,1,

1,12-n1,-n1,1

2,21,2

2221

11

    b       b                

0        b             

0            0                 

              

0                              0    
0                                    0   

L

L

L

O

L
L

 

                  

































=

−−−

−−−

nnn

nnn

nnn

b

b

bb

bb
b

,1-nn,2-nn,1,

n1,-n1,12-n1,-n1,1

2,21,2

2221

11

c     c     b               

c   c   b            

0            0               

              

0                       0    
0                             0   

L

L

L

O

L
L

 

という形になる。 

いま、 
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











































=

−−

−−−

+−

−−−+

nnn

inn

nnn

iiiiiii

iii
t

i
t

n

b

b

b

ccbb

bb

bb

b

PLP

,in,1-in,1,

n1,-n,11-i1,-n1,1

1,2i2,-n1-i2,-n1,2

1,,1,1,

1,11,1

2221

11

1

c                      c     b            

c                    c   b         

0       c     c  b         
                              

0              0                    

0                             0           

              

0                       0    

0                             0   

LL

LL

LL
M

LL

LL

O

L

L

L  

とおくと、 t
i

t
n PLP 1+L の右から第 i-1 列と第ｉ列の間の回転を表わす t

iP を掛けたものは次

のようになる。 

t
i

nnn

inn

nnn

iiiiiii

iii

iii
t

i
t

i
t

n P

b

b

b

ccbb

bb

bb

bb

b

PPLP















































=

−−

−−−

+−

−−−

−−−

+

,in,1-in,2-in,1,

n1,-n,11-i1,-n2-i1,-n1,1

1,2i2,-n1-i2,-n2-i2,-n1,2

1,,1,2-ii,1,

1,12-i1,-i1,1

2,21,2

2221

11

1

c                      c     b    b                

c                    c   b  b             

0    c       c  b  b            
                              

0              0              b               

0                             0      b            

0                                         0              

              

0                       0    

0                             0   

LL

LL

LL
M

LL

LL

LL

O

L

L

L  



岡本安晴 2001.2.1;2001.8 

―21― 

            















































′

′

′

′

=

−−

−−−

+−

−−−

−−−

nnn

inn

nnn

iiiiiii

iii

iii

b

b

b

ccb

b

bb

bb

b

,in,1-in,2-in,1,

n1,-n,11-i1,-n2-i1,-n1,1

1,2i2,-n1-i2,-n2-i2,-n1,2

1,,1,2-ii,1,

i1,-i1,12-i1,-i1,1

2,21,2

2221

11

c                         c     c    b                

c                       c   c  b             

0        c       c  c  b             
                              

0              0            c    b                

0                      0   c    c  b             

0                                           0               

              

0                       0    

0                             0   

LL

LL

LL
M

LL

LL

LL

O

L

L

 

  したがって、 2=i まで上の操作を繰り返すと 

       

































===

−

−−−

nnn

n

nnn

tt
n

c

c

c

ccc
cc

PLPLQA

,1-nn,1,

n1,-n1-n1,-n1,1

1,21,2

232221

1211

2
)1(

c     c                         

c   c                      

0    c                      

                     

0                      0        
0                            0       

L

L

L

O

L
L

L  

という形に書けることがわかる。 

上式と AQQA t=)1( が対称行列であることから、 )1(A は次の形の対称３重対角行列 
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であることがわかる。したがって、上の対称３重対角行列をあらためて Aとして、分解
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QLA = と相似変換 LQAQQA == −1)1( を繰り返すことができる。この分解と相似変換を

繰り返していくと )1(A は対角行列に収束することが知られている。最初の行列 Aと相似変
換で得られる )1(A は同じ固有値をもつので、収束した対角行列の対角成分には Aの固有値
が並んでいることになる。 

分解と相似変換の繰り返しの途中で対角成分の隣の成分の一部が０になったときには小

さい行列に分けることができる。いま、 

                          







=

22

11)1(

0
0

A
A

A                         （２１） 

というように、 )1(A 行列が２つの対称３重対角行列 11A と 22A に分割される形になったとす
る。このとき、（１１）式の形は 

 

)det()det()det( 22221111
)1( IAIAIA λλλ −⋅−=−  

 

と分解できる。ここで、 11I および 22I は、それぞれ 11A および 22A と同じ型の単位行列であ

る。上式より、（２１）式の形の行列 )1(A の固有値は、 11A と 22A の２つの行列の固有値を

別個に求めたものを合わせたものとなっていることがわかる。 )1(A が（２１）式の形にな
ったときは、 )1(A より大きさの小さい 11A と 22A に対して個別にＱＬ法を適用することによ
り計算の効率を上げる。 

(n,n)型の対称行列 Aのハウスホルダー法による３重対角化と、３重対角化された行列に
対するＱＬ法による固有値の算出によって固有値 1λ 、・・・、 nλ が求まると、対応する固
有ベクトル 1u 、・・・、 nu は連立一次方程式 

iiiA uu λ=  

の解として求めることができる。 

以上の手順をまとめると次のようになる。 

 

（１）実対称行列 Aをハウスホルダー法によって３重対角行列Bに変換する。 
（２）Bの直交行列Qと下三角行列 Lの積 QLB = への分解を、Bの隣合う行間の回転 iPの

繰り返しによって得る。 

（３）Bの相似変換 LQBQQB == −1)1( を積 LQとして求める。 

（３ａ） )1(B が対角行列であれば、その対角成分を固有値とする。 
（３ｂ） )1(B が対角行列でないとき、式（２１）のように２つの行列に分解できると

きは、それぞれの（部分）行列 11B および 22B をBとして（２）に戻る。 

（３ｃ） )1(B が対角行列でなく、かつ、式（２１）のように２つの行列にも分解でき
ないときは、 )1(B をBとして（２）に戻る。 

（４）固有値λが求まれば uu λ=A を解いて固有ベクトルuを求める。 
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以上の方法によって固有値と固有ベクトルを求める手続き QL_decomp をユニットファイ

ル UMatCalc2.pas に用意した。QL_decomp のヘッダーは次のようになっている。 

 

    procedure  QL_decomp( var a                //  入力行列 

                                : TMatCalc2; 

                          n,                   //  入力行列の行数・列数 

                          t_n_eigen            //  求める固有値の数 

                                : Longint; 

                          var  n_eigen         //  求まった固有値の数 

                                : Longint; 

                          var lambda           //  lambda[i]：ｉ番目の固有値 

                                : TVecCalc2; 

                           var eigen_vctr       //  eigen_vctr[*,i]：ｉ番目の 

                                : TMatCalc2 );  //               固有ベクトル 

 

第１パラメータａに固有値と固有ベクトルを求める実対称行列を表す配列を設定する。

第２パラメータｎには、ａに設定した行列のサイズ、(n,n)型であればｎ、を設定する。第

３パラメータ t_n_eigen には求める固有値の個数を設定するが、実際に求まった固有値の

総数は第４番目のパラメータ n_eigen に返される。求まった固有値と固有ベクトルは、第

５番目のパラメータ Lambda と第６番目のパラメータ eigen_vctr に返される。lambda[i]に

ｉ番目の固有値、eigen_vctr[j,i]にｉ番目の固有値に対応する固有ベクトルの第ｊ成分が

格納される。 

手続き QL_decomp の使用例をプロジェクト PCheckQL.dpr として用意した。このプロジェ

クトでは、QL_decomp が次のように呼出されている。 

 

      a[1,1]:=5.0;  a[1,2]:=3.0; 

      a[2,1]:=3.0;  a[2,2]:=5.0; 

      QL_decomp( a, 2, 2, n_eigen, lambda, eigen_vctr ); 

 

  手続き QL_decomp による計算は、プロジェクトの実行時フォームの「ＧＯ」ボタンのク

リックで始まります。lambda と eigen_vctr に返された固有値と固有ベクトルはテキストフ

ァイルに書き出されますが、このファイルの名前は「ＧＯ」ボタンのクリックで表示され

るダイアログボックスにおいて設定する。 
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特異値分解 

対称行列 Aは（６）式のようにスペクトル分解ができる。 

                     t
nnn

ttA uuuuuu λλλ +++= L222111                 （６） 

一般の(m,n)型の行列 Aのときは、次のように分解できる（５）。 
                      t

rrr
ttA vuvuvu µµµ +++= L222111                 （２２） 

 

ここで、rは行列 Aの階数、 0>iµ 、 1u 、・・・、 ru は互いに直交する長さ１の(m,1)型の

列ベクトル、 1v 、・・・、 rv は互いに直交する長さ１の(n,1)型の列ベクトルである。した

がって、 

                          iiiA uv µ= 、 ii
t
i A vu µ=                    （２２ａ） 

が成り立つ。 

  （２２）式の形の分解を特異値分解（singular value decomposition, SVD）といい、 iµ
を特異値（singular value）、 iu を左特異ベクトル、 iv を右特異ベクトルという（２）。 

(n,1)型のベクトルxに式（２２）の行列 Aを左から掛けると 
 

           xvuxvuxvux t
rrr

ttA µµµ +++= L222111  

               )()()( 222111 xvuxvuxvu t
rrr

tt µµµ +++= L                   （２３） 

 

となる。ここで、 1v 、・・・、 rv は互いに直交する長さ１の列ベクトル、すなわち、 r次

元空間の正規直交基底（座標軸）になっていて、 xv t
i は xの iv への正射影の長さ、すなわ

ち xの iv 軸での座標値である。式（２３）は、ベクトルxの行列 Aによる変換 xA は、xの

iv への正射影 xv t
i に重み iµ を付けた値を iu 軸上の座標 )()( xvuuxv t

iiii
t
ii µµ = とするも

のであることを表わしている。 

いま、 

( )rU uu L1= 、



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


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
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、 ( )rV vv L1=  

とおくと、（２２）式は 
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となる。ここで、 
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                           I=  
である。 

同様に、 

IVV t =  
が成り立つ。 

したがって、 
tttt VUVUAA ))(( ∆∆=  

                              tt UVVU ∆∆=  

                                tUIU ∆∆=  

                                tUU 2∆=  

 

)()( tttt VUVUAA ∆∆=  

                                tt VUUV ∆∆=  

                                tVV 2∆=  

が成り立つ。 
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上式を（８ａ）式と比較することにより、 2
iµ と iu は tAA の固有値と固有ベクトル、 2

iµ と

iv は AAt の固有値と固有ベクトルになっていることがわかる。また、 iu と iv の間には（２

２ａ）式の関係が成り立っている。したがって、行列 Aの特異値分解は、行列 tAA あるい
は AAt のスペクトル分解によって求めることができる。この方法で特異値分解を求める手

続き SVD をユニットファイル UMatCalc2.pas に用意した。手続き SVD のヘッダーは次のよ

うになっている。 

 

    procedure  SVD( var a             //   入力行列 

                          : TMatCalc2; 

                    m,                //   入力行列の行数 

                    n                 //   入力行列の列数 

                          : Longint; 

                    var u             //   u[*,i]:ｉ番目の左特異ベクトル 

                          : TMatCalc2; 

                    var lambda        //   lambda[i]:ｉ番目の特異値 

                          : TVecCalc2; 

                    var  rnk          //   ０でない特異値の数 

                          : Longint; 

                    var v             //   v[*,i]：ｉ番目の右特異ベクトル 

                          : TMatCalc2     ); 

 

(m,n)型の行列の特異値分解を求めるときは、第１パラメータａにその行列を表す配列、

第２パラメータｍ、第３パラメータｎにその行数と列数を設定する。特異値分解の結果は、

第４パラメータｕに左特異ベクトル、第５パラメータ lambda に特異値、第６パラメータ rnk

に求まった特異値の数、第７パラメータに右特異ベクトルが返される。lambda[i]にｉ番目

の特異値、u[j,i]に対応する左特異ベクトルの第ｊ成分、v[j,i]に右特異ベクトルの第ｊ

成分が格納される。例えば、次のように呼出す。 

 

      a[1,1]:=3.0;  a[1,2]:=3.0;  a[1,3]:=1.0;  a[1,4]:=1.0; 

      a[2,1]:=1.0;  a[2,2]:=1.0;  a[2,3]:=3.0;  a[2,4]:=3.0; 

 

      SVD( a, 2, 4, u, lambda, n_eigen, v ); 

 

プロジェクト PCheckSVD.dpr は上の例を実行するものである。実行開始時に表示される
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フォーム上の「ＧＯ」ボタンのクリックで計算が始まる。計算結果は、「ＧＯ」ボタンのク

ックで表示されるダイアログボックスにおいて設定した名前のテキストファイルに書き出

される。このテキストファイルに書き出された結果は、プロジェクトの実行終了後、エデ

ィタで開いて見ることができる。 

 

 

主成分分析 

スペクトル分解とか特異値分解はデータ分析で広く用いられている。ここではスペクト

ル分解を用いる分析法の例として、主成分分析のプログラムを作成した。 

ある対象を多数の側面から測定しても、本質的には少数のものでそれらの測定値が表わ

されるということがある。例えば、男子の体格を１０個の側面、身長、座高、胸幅、足長、

足幅、手幅、頸囲、胸囲、体重、頭囲、で測ったとき、これらの値は、体格のよさを表わ

す値（成分）で全体の５８％が説明され、体形を表わす値（成分）で全体の１３％が説明

されるというデータがある（５）。この場合、１０個の変数よりなるデータの変動量の７０％

以上が２個の成分で表わされる。この多数の変数で表わされているデータを幾つかの少数

の成分で表わすための分析法の一つとして主成分分析法(5)(6)がある。 

いま、１つ１つのデータがｐ個の変数、 1z 、・・・、 pz 、で表わされているとする。こ

のとき、これらの表わすデータを合成変数 f で出来るだけよく表わすことを考える。 
各変数 iz は平均が０、分散が１であるように基準化されているものとする。すなわち、

データの素点からその平均点を引いたものを標準偏差で割っておく。この基準化によって

ｐ個の変数の変動量（分散）はお互いに等しくなる。平均値を０（原点）に置いているの

で、原点（平均値）を中心とした変動を扱うのが容易になっている。 

合成変数 f として、次のように 1z 、・・・、 pz の重み付き和を考える。 

pp zwzwf ++= L11  

この合成変数は、上式より平均が０になっている。さらに、分散が１であるという条件の

もとで、合成変数 f が 1z 、・・・、 pz の変動（情報）をよく表わすように重み、 1w 、・・・、

pw 、を決める。 

f と iz との相関係数を ia とおき、 

t
paa )( 1L=a  
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とおく。 1z 、・・・、 pz の変動（情報）をよく表わす合成変数 f を、 ia の２乗和 aa t を最

大にするいう基準を満たすものとして求める。このaは、 1z 、・・・、 pz の間の相関を成

分とする行列（相関行列）をRとおくとき、ある数λに対して次式を満たすものとして求
めることができる（５）。 

aRa λ= 、 λ=aa t  

 

aa t を最大にするということから、λはRの最大固有値であることがわかる。 

このaに対して、重み 1w 、・・・、 pw を成分とするベクトル 

t
pww )( 1L=w  

は次式で与えられる。 

aw
λ
1

=  

 

合成変数を複数個、 1f 、・・・、 rf 、とるときは、 

 

pjpjj zwzwf ++= L11 、 rj ,,1 L=  

 

とおき、各 jf の分散が１でかつ互いに直交するという条件の下で、 jf と 1z 、・・・、 pz の

相関係数の２乗和が最大になるようにする。 jf と 1z 、・・・、 pz の相関係数を成分とする

ベクトルを ja とおくとき、 ja は次式を満たすものとして求められる。 

jjj aRa λ= 、 jj
t
j λ=aa  

1f 、・・・、 rf の順で 1z 、・・・、 pz の変動量をよく表わすようにするとき、 jλ はRの固

有値を大きいものから順にとる。このとき、重みベクトル 

t
jpjj ww )( 1L=w  

は次式で与えられる。 
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j
j

j aw
λ
1

=  

 

上のようにして求められた合成変量を主成分という。 

jf と 1z 、・・・、 pz の相関係数の２乗和が 

jj
t
j λ=aa  

で与えられ、ｐ個の変数 1z 、・・・、 pz それぞれの分散が１に標準化されていて、Rのｐ

個の固有値の和が次式 

ptr
p

j
j ==∑

=

)(
1

Rλ  

を満たすことから、次式 

                                  
p

t
j

p

k
k

j aa
=

∑
=1

λ

λ
                       （２４） 

は、合成変量 jf によってｐ個の変量 1z 、・・・、 pz の変動量のどれぐらいの割合が表わさ

れているのかを示していると考えられる。式（２４）の値を合成変量 jf の寄与率という。 

上の合成変量（主成分）を求める方法は主成分分析と呼ばれている。主成分分析を行う

プログラム例 PPCA.dpr を作成した。PPCA.dpr の実行開始時のフォームは図 C1 のようにな

っている。 
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図 C１  プロジェクト PPCA.dpr の実行開始時のフォーム 

 

グリッドの列や行は、「追加（変数）」ボタンおよび「追加（データ）」ボタンのクリックで

増やすことができる。追加される行および列は、グリッド内のアクティブなセルの後に挿

入される。セルは、そのセル内をクリックするとアクティブになる。「削除（データ）」あ

るいは「削除（変数）」ボタンをクリックすると、アクティブになっているセルの行あるい

は列が削除される。これらの操作によってグリッド内の列数および行数を適当に設定して

おいて、変数のラベルやデータ値を設定する。 

 
図 C2  データの設定されたグリッド 
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図 C2 はデータを設定した状態である。データの設定後、「計算」ボタンのクリックで主成

分分析の計算が始まる。このとき、グリッド内のセルは、変数ラベル欄を除いて、すなわ

ちデータ値設定用のセルはすべて数値が設定されている必要がある。数値の設定されてい

ないセルがあるとエラーとなる。このエラーは Delphi の try 文で処理されているので、「Ｏ

Ｋ」ボタンをクリックしたり、Delphi の統合環境で実行しているときは「実行｜実行」メ

ニューの選択で図 C3 のようにエラーの原因になったセルを表示させることができる。 

 
図 C3  空白セルのため、「計算」ボタンをクリックするとエラーが表示される。 

 

問題のセルを訂正した後、再度「計算」ボタンをクリックして主成分分析の計算を始める。 

グリッドに設定されたデータは「保存」ボタンのクリックでファイルに保存することが

できる。保存用のファイル名は、「保存」ボタンのクリックで表示されるダイアログボック

スにおいて設定する。保存したファイルのデータは、「読出」ボタンのクリックでグリッド

に読み込むことができる。 

データのグリッド内への読み込みは、リスト C１のような形式のテキストファイルも読み

込むことができる。リスト C１の形式のファイルから読み込むときは、「テキストファイル

入力」ボタンをクリックする。 

 

 

 

 

 



岡本安晴 2001.2.1;2001.8 

―32― 

 

リスト C1  「テキストファイル入力」ボタンのクリックで読み込み可能なファイル例 

 

 
       テキストファイル入力ボタンのクリックで 
            読み込み可能なファイル 
 
*/ 
5 
V1 変数１ 
V2 変数２ 
V3 変数３ 
V4 変数４ 
V5 変数５ 
  1        25        24        20        16        15 
  2        77        74        60        45        42 
  3        65        67        72        77        78 
  4        62        63        69        76        77 
  5         1         9        41        73        81 
  6        94        92        82        73        70 
  7        46        43        31        20        17 
  8        59        60        65        69        70 
  9        46        43        30        17        14 
 10        18        19        21        22        23 
 11        89        88        86        84        83 
 12        83        76        45        14         7 
 13        29        33        49        65        69 
 14        33        38        56        74        79 
 15        57        55        43        32        29 
 16        12        15        27        39        42 
 17        79        73        51        28        22 
 18        79        77        72        67        66 
 19        68        62        40        19        13 
 20         5         7        17        26        28 
-10 

 

 

リスト C1の形式は、次のようになっている。 

行の先頭が「*/」で始まる行のところまではコメント行として読み込みのときは読み

飛ばされて無視される。 

「*/」で始まる行の次の行に変数の数を書く。 

その次の行から１行に１変数ずつ変数用のラベルを書く。ラベルが無い場合でも空白行

として１変数に１行分をとる。 

変数の数だけのラベル（空白のラベルも数える）を書いた後、データを書く。各ケース

（組）分のデータを１行に書くが、先頭にケース番号を表わす数値を付けておく。 

データの読み込みは、負のケース番号を読み込んだところで終了する。リスト C1 では、

負のケース番号として「－１０」が書かれている。 
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グリッドにデータが設定されている状態で「計算」ボタンをクリックすると、計算結果

を書き出すためのテキストファイルの名前を設定するダイアログボックスが表示される。

この計算結果が書き出されるファイルは、プログラムの実行終了後、エディタなどで開い

て見ることができる。図 C2 のデータ（DPCAData20.txt）の場合の計算結果の出力の一部を

示すと、リスト C2のようになっている。 

 

リスト C2  主成分分析のテキストファイルへの出力例の一部 

 
相関行列に対する主成分分析 
 
         固有値     寄与率(％) 累積寄与率(％) 
      3.3813142          67.63          67.63 
      1.6182664          32.37          99.99 
      0.0002371           0.00         100.00 
      0.0001244           0.00         100.00 
      0.0000579           0.00         100.00 
 
 
主成分構造ベクトル 
 
                     第1主成分      第2主成分      第3主成分   ・・・   
      V1 変数１      0.7429406     -0.6692886     -0.0084671   ・・・ 
      V2 変数２      0.8082172     -0.5888226      0.0030043   ・・・  
      V3 変数３      0.9999262     -0.0043984      0.0093447   ・・・ 
      V4 変数４      0.8029060      0.5960345     -0.0081753   ・・・ 
      V5 変数５      0.7291281      0.6843469      0.0014846   ・・・  
 
 
重みベクトル 
 
                     第1主成分      第2主成分      第3主成分   ・・・ 
      V1 変数１      0.2197195     -0.4135837    -35.7139520   ・・・ 
      V2 変数２      0.2390246     -0.3638601     12.6720059   ・・・ 
      V3 変数３      0.2957212     -0.0027180     39.4157506   ・・・ 
      V4 変数４      0.2374538      0.3683167    -34.4833960   ・・・ 
      V5 変数５      0.2156345      0.4228889      6.2618563   ・・・ 
 
 
主成分得点 ＝ 
 
       ID   第1主成分   第2主成分   第3主成分   第4主成分   第5主成分 
        1    -1.40887    -0.16826    -0.37954    -0.07041     0.07830 
        2     0.52349    -0.79377     1.96249    -0.11127    -0.70399 
        3     1.12620     0.50560     1.05738     0.48869     1.74309 
        4     1.00516     0.57600    -1.75702     0.07776    -0.11202 
        5    -0.36972     2.24931    -0.21448     0.34422    -0.19492 
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寄与率の第１主成分と第２主成分に対するものの和（累積寄与率）が 99.99％となってい

て、この２つの主成分でデータの変動量のほとんどが説明できていることがわかる。この

場合のデータ DPCAData20.txt は、次の式によってシミュレーションにより作成されたもの

である。 

        v1:=random; v2:=random; 

        x1:=round(100*v1); 

        x2:=round(90*v1+10*v2); 

        x3:=round(50*v1+50*v2); 

        x4:=round(10*v1+90*v2); 

        x5:=round(100*v2); 

 

すなわち、関数 Round による丸めに伴う変動分を除いて、２つの変数 v1 と v2 により５つ

の変数 x1、・・・、x5 の値が与えられている。このことが、２つの主成分で 99.99％の変動

分が説明されるという分析結果になっている。 

「計算」ボタンのクリックによる計算が終了すると、「描画」ボタンが Enabled になる（図

C4）。 

 

図 C4  計算終了後、「描画」ボタンが Enabled になる。 
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「描画」ボタンをクリックすると、図 C5 のようなフォームが表示される。 

 

図 C5  「描画」ボタンのクリックで表示される主成分の選択用フォーム 

 

横軸と縦軸にそれぞれどの主成分をとるのかを指定する。第ｉ主成分を指定するときは

数字のｉを設定する。縦軸と横軸の主成分の指定後、「ＯＫ」ボタンをクリックすると図Ｃ

６のような画面になり、指定した主成分の構造ベクトルを座標値とする変数の散布図が描

かれる。 

 

 

図 C6  主成分構造の図示 

 

図において、各変数はそのラベルを表わす文字列の先頭２バイトの文字列（シフト JIS

コード）で表示される。第１変数のラベルは「V1 変数１」なので、先頭２バイトの文字列
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「v1」を小円で囲んだもので表示されている。ラベルが１バイトのときは、その１バイト

分の文字で表示される。ラベルがないときは小円の中は空白になる。構造ベクトルのマッ

プにおいて小円がどの変数を表わしているのかがわかるように、変数には先頭２バイトの

文字（文字列）で識別可能であるようにラベルを付けておく必要がある。 

図Ｃ６より、第１主成分は全ての変数に対して構造ベクトルの成分の値（変数との相関

係数）が０より大きい値になっていることがわかる。すなわち、第１主成分は全ての変数

の変動の全体としての傾向を表わしている。変数 x3 が第１主成分上にプロットされている

のは、この変数が５つの変数 x1、・・・、x5 の変動の全体の傾向の中心にあるからである。

第１主成分に対して第２主成分は、５つの変数の間の違いを表わしている。x1、・・・、x5

を生成する 2つの変数 v1と v2 のうち、v2の重みの大きいもの、x5と x4、は第２主成分と

の相関が正の値で大きく、v1 の重みの方が大きいもの、x1 と x2、は第２主成分との相関が

負の値で絶対値が大きくなっている。すなわち、第２主成分は５つの変数を生成した２つ

の乱数 v1と v2 の重みの違いを表わしている。 

 

 

一般逆行列 

行列での割り算をおこなうものとして逆行列があるが、逆行列は０でない行列であっても

存在するとは限らない。逆行列の存在する行列は正則であるというが、正則でない行列の

場合も含めて、逆行列の概念をより一般化した一般逆行列（generalized inverse, 

g-inverse）（５）（７）というものが定義されている。 

(n,n)型の行列 Aの逆行列 1−A は、次式を満たすものとして定義されている。 
 

IAAAA == −− 11  

 

ここで、I は(n,n)型の単位行列（対角成分がすべて１で、他の成分はすべて０である行列）

である。(n,n)型の行列 Aに対して、逆行列 1−A は常に存在するとは限らない。 
逆行列は行数と列数が同じである正方行列に対して定義されているものであるが、一般

逆行列は行数と列数が等しくない場合にも定義されているものである。(m,n)型の行列 Aの

一般逆行列は次式を満たすものとして定義され、 −A で表わされる。 
 

AAAA =−  

 

  上式を満たす一般逆行列は、特異値分解から簡単に得ることができる。 

Aの特異値分解を次のようにおく。 
tVUA ∆=  

上の特異値分解に対して行列Bを次式で与える。 
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tUVB 1−∆=  

 

ここで、 1−∆ は次式で与えられるものである。 





















=



















=∆

−

−

−−

−

1

1
2

1
1

1

2

1

1

  0           0

            
0    0     0 

0         0   

  0           0
            

0    0     0 
0         0   

rr µ

µ

µ

µ

µ
µ

L

O

L

L

L
O
L

L

 

 

このとき、次式が成り立つ。 

 

               ttt VUUVVUABA ∆∆∆= −1  

                    tVIIU ∆∆∆= −1  

                    tVU∆=  

                    A=  
 

すなわち、行列Bは一般逆行列の条件を満たしているので 
 

                              tUVA 1−− ∆=                               (Ｄ１) 

 

となる。 

),min()( nmkArankr =<=  

 

のときは、特異値分解における行列U とV を拡張して、 

tVUA 000∆=  

とおくことができる。ただし、 0∆ は(k,k)型の対角行列で、 

 

              






∆
=∆

0   0
0  

0  

              ( )krUU uu L10 += 、 ( )krVV vv L10 +=  

              IUU t =00 、       IVV t =00  

である。 

  いま、 
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tU
K

VC 0

1

0     0 
0  








∆
=

−

 

 

とおく。ここで、Kは(k-r,k-r)型の任意の行列である。 
このとき、 

          ttt VUU
K

VVUACA 000

1

000 0   0
0  

    0 
0  

0   0
0  








∆







∆







∆
=

−

 

               tV
I

U 00 0   0
0  

0  0
0  








∆








=  

               tVU 00 0   0
0  








∆
=  

               A=  
 

すなわち、Cも一般逆行列である。CはKに対応して無数に決まるので、一般逆行列も無
数に存在することになる。 

式（Ｄ１）で与えられる一般逆行列を求める手続き GInvBySVD をユニットファイル

UMatCalc2.pas に宣言した。GInvBySVD のヘッダーは次のようになっている。 

 

    procedure GInvBySVD( a     : TMatCalc2;   //   (m,n) matrix 

                         var b : TMatCalc2;   //   (n,m) matrix = g-inv(a) 

                         m, n  : Longint   ); 

 

第１パラメータに、一般逆行列を求める(m,n)型の行列ａを表す配列を設定する。求められ

た一般逆行列は第２パラメータｂに返される。第３，４パラメータには行列の行数ｍと列

数ｎを設定する。一般逆行列の行数はｎ、列数はｍになる。 

手続き GInvBySVD の使用例をプログラム PCalcGInv.dpr として用意した。PCalcGInv.dpr

では、行列ａを 

 

a[1,1]:=1.0; a[1,2]:=2.0; a[1,3]:=3.0; 

a[2,1]:=5.0; a[2,2]:=7.0; a[2,3]:=9.0; 

 

と設定した後、GInvBySVD を次のように呼出して配列ｂに一般逆行列を求めている。 

 

GInvBySVD( a, b, 2, 3 ); 
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プロジェクト PCalcGInv.dpr の実行で表示されるフォーム上の「ＧＯ」をクリックする

と計算が始まる。計算が始まると、まず計算結果を書き出すためのテキストファイルの名

前の設定を求めるダイアログボックスが表示される。計算結果はこのダイアログボックス

において設定した名前のファイルに書き出されるので、プログラムの実行終了後にエディ

タで開いて見ることができる。 

 

掃出し法による一般逆行列の計算 

上の特異値分解による方法では、求めた一般逆行列の精度は特異値分解の精度に依存し

ている。ここでは、特異値分解によらない方法、行と列についての基本変形によって得ら

れる標準形（１）を用いる方法について説明する。 

(m,n)型の行列 Aが基本変形によって次の標準形になったとする。 
 

rnm
r J

I
RAC ,,0  0

0  
=








=  

 

ここで、RおよびCは、 Aの行についての基本変形（左基本変形）および列についての基

本変形（右基本変形）を表わす行列である。 rI  は(r,r)型の単位行列で、(m,n)型の行列 rnmJ ,,

は(1,1)成分から(r,r)成分までの対角成分が１で他の成分はすべて０である行列である。 

このとき、 

                              RCJB t
rnm ,,=                            (Ｄ２) 

とおくと、 

              1
,,

1
,

1
,,

1 −−−−= CJRRCJCJRABA rnm
t

rmnrnm  

                   1
,,,,,,

1 −−= CJIJIJR rnmm
t

rnmnrnm  

                   1
,,

1 −−= CJR rnm  

                   A=  
 

が成り立つ。すなわち、（Ｄ２）で与えられる行列は Aの一般逆行列になっている。 

                                 RCJA t
rnm ,,=−                         （Ｄ３） 
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上式によって一般逆行列を求める手続き GInv をユニットファイル UMatCalc2.pas に用意

した。ヘッダーは次のようになっている。 

 

       procedure GInv( a : TMatCalc2;       //   (m,n) matrix 

                       var b : TMatCalc2;   //   (n,m) matrix 

                       m, n  : Longint; 

                       var rank : Longint ); 

 

第１パラメータから第４パラメータまでは GInvBySVD と同じであるが、第５パラメータが

加えられている。第５パラメータには、第１パラメータに設定された行列ａの階数が返さ

れる。したがって、GInv の使用法も GInvBySVD と同様で、 

 

GInv( a, b, m, n, rank ); 

 

というように GInv を呼出すと、ｂにａの一般逆行列が返される。 

 

ムーア・ペンローズ逆行列 

式（Ｄ１）で与えられる一般逆行列は、次の４つの式を満たす。 

 

      AAAA =− 、 −−− = AAAA 、 −− = AAAA t)( 、 AAAA t −− =)(  

 

上の４つの式を満たす一般逆行列はムーア・ペンローズ逆行列と呼ばれ、 +A で表わされ
る。したがって、次式が成り立つ。 

 

             （ＭＰ１） AAAA =+  

             （ＭＰ２） +++ = AAAA  

             （ＭＰ３） ++ AAAA t)(  

             （ＭＰ４） AAAA t ++ =)(  

 

式（Ｄ３）によって与えられる一般逆行列は、例えば 

            RCJCJRAA t
rnmrnm ,,

1
,,

1 −−− =  

                 RJR rnm ,,
1−=  

となり、一般には 1−= RR t が成り立たないので（ＭＰ３）も成り立たず、ムーア・ペンロ

ーズ逆行列ではない。 
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特異値分解を用いないでムーア・ペンローズ逆行列を求める方法として、ペンローズに

よる次の方法がある（７）。 

 

（１） AAB t← とおく。 

（２） IC ←1 、 )(Arankk ← 、 1←i とおく。 

（３） ki ≥ なら（６）に跳ぶ。 

（４） BCI
i

BCtr
C i

i
i −←+

)(
1 とおく。 

（５） 1+← ii とおき、（３）に戻る。 

（６） t
k

k

AC
BCtr

k
A

)(
←+ とおく。 

 

上のペンローズの方法でムーア・ペンローズ逆行列 +A を求める手続き GInvByPenrose

をユニットファイル UMatCalc2.pasに用意した。ヘッダーは 

 

    procedure GInvByPenrose( a : TMatCalc2;       //   (m,n) matrix 

                              var aplus : TMatCalc2;   //   (n,m) matrix 

                              m, n  : Longint; 

                              var rank : Longint ); 

 

となっていて手続き GInvと同じである。使い方も GInvと同じである。 
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