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極 値 探 索－１ 

１次元最適化問題 

 

  関数 )(xfy = の最小値（極小値）を与える変数値 minx の求め方について考える。最大
値を与える変数値 mazx は、関数 )()( xfxgy −== の最小値を与える変数値として求める

ことができる。 

図１は関数 

                      2)10)(6(700 −−+= xxxy                         （１） 

のグラフをプログラム PDrawCurve.dprによって描いたものである。 

最小値 

極小値 

 

図１  関数 2)10)(6(700 −−+= xxxy のグラフ 

 

図１のグラフの場合、最小値の他に極小値がある。このような場合、間違いなく最小

値を求めるためには、変数ｘの変域全体にわたって総当たり的に関数値を調べる方法が

確実である。Exhaustive Search 法では、変域を細かく区切った分点における関数値を

調べることにより、最小値を与える変数値の存在範囲を求めている。この Exhaustive 

Search 法で得られた存在範囲を基にして、最小値を与える変数値を求めることができ

る。 
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Exhaustive Search 法（１） 

関数 )(xfy = の変域が ],[ UbLb であるとき、区間 ],[ UbLb をn等分して関数が最小値

をとる区間 ],[ UxLx を求める。ここで、 )(
2

)( LbUb
n

LxUx −≤− である。区間 ],[ UbLb を

n等分したときの分点を ix 、 ni ,,0 L= 、とおけば 

 

nLxUxiLxxi /)( −+=  

 

となる。ただし、 0x と nx は区間 ],[ UbLb の端点である。これらの ix に対する関数値
)( ixf を全て調べてその中での最小値を探す。全ての )( ixf を調べるので、最小値でな

い極小値を間違って最小値として扱う危険はない。ｎが十分に大きい値のとき、 0ii = の
ときの関数値 )( 0ixf が最小であれば、区間 =],[ UxLx ],[ 1010 +− ii xx において関数が最小値

をとると考えられる。ただし、 0ix が端点の時は、 

 

Lbxxi == 00 の場合は =],[ LxUx ],[ 10 xx  

Ubxx ni ==0 の場合は =],[ LxUx ],[ 1 nn xx −  

 

において関数は最小値をとると考えられる。 

この exhaustive search 法によって関数が最小値をとる区間 ],[ UxLx を求める手続き

が MinOneDim である。この手続きはユニットファイル UOptOneDim.pas に次のようなヘ

ッダーをもつものとして宣言されている。 

 

          procedure MinOneDim( L_b, U_b   : extended; 

                               n          : Longint; 

                               f          : TFunc; 

                               var 

                                 L_x, U_x : extended ); 

 

第１、第２パラメータで与えられる値を端点とする区間 ]_  ,_[ bUbL において、第４

パラメータとして与えられる関数ｆがその最小値をとるものとする。第３パラメータで

与えられる数ｎで区間 ]_  ,_[ bUbL を等分して、各分点における関数値を比較すること

により、関数が最小値をとる区間を絞り、その区間 ]_  ,_[ XUxL の端点を L_x および

U_x に返す。 

先の関数 

                 2)10)(6(700)( −−+== xxxxfy                        （１） 
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の最小値を与える区間を求めるときは、例えば 

 

               function  f( x : extended ) : extended; 

                 begin 

                     f := 700 + x*(x-6)*sqr(x-10); 

                 end; 

 

と関数を宣言しておき、手続き MinOneDim を 

 

           MinOneDim(-10.0, 20.0, 100, f, L_x, U_x ); 

 

のように呼出す。 

上の場合、関数の最小値が区間 ]0.20  ,0.10[− において調べられる。区間は 100 等分さ

れて、最小値をとる範囲が絞られる。上の手続きの呼び出しによって得られた小区間は 

 

]3.2   ,7.1[]_   ,_[ =xUxL  

である。 

プログラム PExhaustive.dpr は上の計算を行うものである。手続き MinOneDim はユニ

ットファイル UOptOneDim.pas に宣言されているので、UExhaustve.pas の uses 節で 

 

                     uses  UOptOneDim; 

 

とユニット UOptOneDim の使用が宣言されている。ユニット UOptOneDimは、最小値の

探索の途中経過を表示するためのフォーム（UOptOneDim.dfm）を生成することができる。

ただし、この途中経過を表示するときは、フォームの生成と廃棄を行うところがコメント

としてあるので｛ ｝や//をはずす必要がある。また、表示を実行する手続き Display に付

いている｛ ｝もはずす。 

PExhaustive.dpr を実行して表示されるフォーム上の GO ボタンのクリックで計算が

始まり、計算結果はフォーム上に表示される（図２）。 
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図２  PExhaustive.dpr の実行結果 

 

 

Golden Section 法（１）、（２）、（３） 

Exhaustive search 法では関数が最小値をとる区間を絞ることはできるが、最小値を

与える変数値を決めることはできない。関数が区間 ]_  ,_[ bUbL で下に凸であるとき、

最小値を与える変数値を求める方法の１つに Golden section 法と呼ばれているものが

ある。 

Golden section 法では、関数の最小値が存在する区間 ],[ BA が与えられたとき（図３、

４）、区間内の２点 C,D における関数値を比較して最小値の存在する区間を絞る。 

 

図３ Golden section の比率wで設定した分点（点 C での関数値より点 D での

関数値の方が小さい場合）。wは ACの ABに対する比率、およびCDのCBに
対する比率を表わす。 

 



岡本安晴 2001.2.3;2001.8 

―5― 

 

例えば図３のような場合では、区間 ],[ BC に絞る。これは点 Dでの関数値が点 Cでの値

より小さい場合であるが、点 Cでの関数値の方が点 Dでの値より小さい（図４）ときは

区間 ],[ DA に絞る。 

 
図４ Golden section の比率wで設定した分点（点 C での関数値の方

が点 Dでの関数値より小さい場合）。ここで、 ADCDABDBw // ==
である。 

 

関数値の計算回数を少なくするために、次のステップでの関数値の比較において、例え

ば図３の場合なら点Dにおける関数値と点Fにおける関数値との比較が区間 ],[ BA のと

きの点 Cと点 Dにおける比較に対応するようにする。このために、線分ＡＢ上における

点ＣとＤの相対的な位置関係が、線分ＣＢ上における点ＤとＦの相対的な位置関係と同

じになるようにする。すなわち、 

 

                        w
CB
CD

AB
AC

==                      （２） 

 

とする。図３の場合と図４の場合が同じように扱えるようにするため、点ＣとＤは線分

ＡＢ上で対象な位置関係になるようにする。すなわち 

 

DBAC =  
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とする。この関係は、線分ＣＢ上の２点ＤとＦについても成り立つようにする（図３の

場合）ので 

FBCD =  
 

とおく。以上の関係と、式（２）を組み合わせて次式を得る。 

 

w
ww

−
−

=
1

21
1

 

これより 

0132 =+− ww                     （３） 

を得る。 

図４の場合も同様にして、 

AD
CD

AB
DB

=  

より式（３）が導かれる。 

  式（３）より、 

382.0≈w  

となる。 

Golden section 法では、この 382.0≈w の値によって区間の内分点を設定して関数値

の比較を行い、最小値の存在する区間を小さくしていく。具体的には、次のような手順

になる。 

 

（１）関数 f が最小値をとる区間を ]3,0[ hh とし、端点での関数値を )0(0 hfv =
および )3(3 hfv = とおく。 

（２） )03(382.001 hhhh −+= 、 )03(382.032 hhhh −−= とおき、関数値を

)1(1 hfv = 、 )2(2 hfv = とおく。 

（３） 21 vv > のとき（図３）は区間 ]3,1[ hh で最小値をとると考えられるので、 1h 、
2h を新しく次の 0h 、 1h として、 )13(382.012 hhhh −+= とおく。この場

合、 )0(hf 、 )1(hf は既に )1(hf 、 )2(hf として計算されているので、新

しい 2h の値に対する )2(hf の値の計算だけで済む。 

      21 vv < のとき（図４）は区間 ]2,0[ hh で最小値をとると考えらるので、1h 、
2h を新しく次の 2h 、 3h として、 )03(382.001 hhhh −+= とおく。この

場合は新しい 1h の値に対する )1(hf の値の計算だけで済む。 

（４） 0h と 3h が十分に近ければ、関数 )(xf は 2/)30(min hhxx +== で最小値

をとるとして、最小値を与える変数値 minx の探索を終了する。 

      0h と 3h が十分に近くないときはステップ（３）に戻る。 
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上の手順で関数 )(xf の最小値を与える変数値 minx を求める手続きが MinByGolden で

ある。この手続きもユニットファイル UOptOneDim.pas に宣言されている。関数ヘッダ

ーは次のようになっている。 

 

 

           procedure  MinByGolden( L_b, U_b  : extended; 

                                   f         : TFunc; 

                                   acc, zero : extended; 

                                   var 

                                     opt_x   : extended ); 

 

第１，２パラメータには、 minx の存在区間 ]_  ,_[ bUbL の下限と上限の値を設定する。

第３パラメータには最小値の探索を行う関数ｆを設定し、acc に精度（ 0h と 3h がどの
程度近い値になれば上の手続きを終了するかという基準）と、zero にゼロとみなす基

準値を設定する。求まった minx の値は第６パラメータ opt_x に返される。 

 

極値探索の精度の限界（３） 

acc の値は計算の精度によって決まる。計算は Extended 型で行われているので、

Extended 型の精度の平方根が acc に設定する精度の上限の目安となる。これは次のよ

うな理由による。 

関数 )(xfy = を minxx = において 2次式で近似すると 

 

)(
2

)(
)()()()( min

2
min

minminmin xf
xx

xfxxxfxf ′′−
+′−+≈  

 

となる。ここで、 )(xfy = は minxx = において最小値をとるので 

 

0)( min =′ xf  

 

となっている。したがって、 

                  )(
2

)(
)()( min

2
min

min xf
xx

xfxf ′′−
+≈            （４） 

となる。 

  いま、 

δ+= minxx  
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とおくと 

)(
2

)()()( min

2

minmin xfxfxfxf ′′+≈+=
δ

δ  

 

となる。したがって、 2/)( min
2 xf ′′δ が )( minxf の精度（有効桁数）より小さい値であ

れば、 )( min δ+xf の値は )( minxf の値と変わらないということになる。つまり、変数 x
と関数 )(xf および )(xf ′′ の値のオーダーが同じくらいであるときは、目安として

min/ xδ の値は計算機での精度の平方根ぐらいまでということになる。手続き

MinByGolden でのパラメータ acc は、収束判定条件での相対値（ min/ xδ に対応する値）

を指定するものである。Extended 型の有効桁数は１９～２０桁なので、精度の平方根

は 1.0ｅ－9ぐらいということになる。したがって、acc の値は 1.0ｅ－9ぐらいが計算

における有効桁数を考慮した場合の限界と考えられる。この精度の限界は、式（４）か

ら分かるように、 )( minxf と )( minxf ′′ の大きさにも依存しているので、個々の関数によ

って決まるものである。 

  関数 2)10)(6(700 −−+= xxxy の場合（式（１））について、上のことを調べてみる。

この関数は、最小値を 2=x  でとる。この関数を 2=x および 5=x の値を中心に相対値
1.0ｅ－11の大きさで変化させたときの関数値の変化を調べてみる。 

  関数を 

          function  f( x : extended ) : extended; 

            begin 

              f := 700 + x*(x-6)*sqr(x-10); 

            end; 

 

と宣言して、次のように関数値ｆ(ｘ)の変化を調べてみる。 

 

    x0:=2.0; 

    for i:=-5 to 5 do 

      begin 

          x:=x0+i*(1.0e-11); 

          v:=f(x); 

          writeln(outf,'x = ',x:25:19, 

                       '        v = ',v:25:19); 

      end; 

    writeln(outf); 

    x0:=5.0; 

    for i:=-5 to 5 do 
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      begin 

          x:=x0+i*(1.0e-11); 

          v:=f(x); 

          writeln(outf,'x = ',x:25:19, 

                       '        v = ',v:25:19); 

      end; 

 

上の実行結果は、リスト１のようになる。 

 

リスト１ 変数ｘの変化と関数値の変化。 

 
x =     1.9999999999500000000        v =   188.0000000000000000000 
x =     1.9999999999600000000        v =   188.0000000000000000000 
x =     1.9999999999700000000        v =   188.0000000000000000000 
x =     1.9999999999800000000        v =   188.0000000000000000000 
x =     1.9999999999900000000        v =   188.0000000000000000000 
x =     2.0000000000000000000        v =   188.0000000000000000000 
x =     2.0000000000100000000        v =   188.0000000000000000000 
x =     2.0000000000200000000        v =   188.0000000000000000000 
x =     2.0000000000300000000        v =   188.0000000000000000000 
x =     2.0000000000400000000        v =   188.0000000000000000000 
x =     2.0000000000500000000        v =   188.0000000000000000000 
 
x =     4.9999999999500000000        v =   574.9999999925000000000 
x =     4.9999999999600000000        v =   574.9999999940000000000 
x =     4.9999999999700000000        v =   574.9999999955000000000 
x =     4.9999999999800000000        v =   574.9999999970000000000 
x =     4.9999999999900000000        v =   574.9999999985000000000 
x =     5.0000000000000000000        v =   575.0000000000000000000 
x =     5.0000000000100000000        v =   575.0000000015000000000 
x =     5.0000000000200000000        v =   575.0000000030000000000 
x =     5.0000000000300000000        v =   575.0000000045000000000 
x =     5.0000000000400000000        v =   575.0000000060000000000 
x =     5.0000000000500000000        v =   575.0000000075000000000 
 
 

 

関数が最小値をとる変数の値ｘ＝２においては、Extended 型の有効桁数（１９～２

０桁）の平方根より小さい相対量（1.0ｅ－11）の変化では関数値は変わらない。しか

し、同じ相対量（1.0ｅ－11）の変化でも、ｘ＝５を中心とする変化では関数値の方も

変化している。 



岡本安晴 2001.2.3;2001.8 

―10― 

式（１）の関数の最小値を求めるときの変数の変化量は、Extended 型の場合、相対

量で 1.0ｅ－11程度では変数値の変化量は小さすぎるということになる。 

リスト１は、プログラム PCkAcc.dpr の実行によって得ることができる。実行開始時

のフォーム上のＧＯボタンをクリックすると計算結果を書き出すためのファイル名の

設定を求めるダイアログボックスが表示される。このファイルはテキストファイルなの

で、プログラムの実行終了後、エディタで開いて見ることができる。ダイアログボック

スにファイル名を設定して「開く」ボタンをクリックすると計算が始まる。 

手続き MinByGolden によって関数の最小値を与える変数値 minx を求めるときは、まず
手続き MinOneDim によって minx の存在区間を十分に絞って、その区間内で関数が最小値

以外の極小値をとることがないようにする。その区間内で手続き MinByGolden による最

小値の探索を行う。すなわち、 

 

MinOneDim(-10.0, 20.0, 100, f, L_x, U_x ); 

 

を実行してから 

 

MinByGolden( L_x, U_x, f, 1.0e-9, 1.0e-19, opt_x ); 

 

によって minx を求める。上の場合、この minx の値は opt_x に返される。 

上の方法の例が、プロジェクト PGoldenSection.dpr である。プロジェクト

PGoldenSection.dpr を実行して表示されるフォームのＧＯボタンのクリックで計算が

始まり、図５のように結果が表示される。 

 
図５ プロジェクト PGoldenSection.dpr の実行結果 

 

 

Quadratic Interpolation 法（１） 

Golden section 法は、区間内で関数が下に凸であれば、確実に関数が最小値をとる

変数値を求めることができる。しかし、区間内で関数を多項式で近似するともっと効率
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よく最小値を求めることができる場合がある。これは、根を求めるとき、Bisection 法

は確実であるが、より効率の良い方法として関数を接線で近似して根を求める Newton

法があることと似ている。 

Quadratic interpolation 法では、関数 )(xfy = を２次関数で近似して最小値を与え

る変数値を求める。２次関数は、3点での関数値を与えて求める。 

３点、 At 、 Bt 、 Ct 、における関数値を Af 、 Bf 、 Cf とする。すなわち、 

 

           )( AA tff = 、   )( BB tff = 、   )( CC tff =  

 

とおく。さらに、３点、 ),( AA ft 、 ),( BB ft 、 ),( CC ft 、を通る２次関数を 

 

                 2)( λλλ cbahy ++==                          （５） 

 

とおく。このとき 

 

       
))()((

)()()(

ACCBBA

ABBACCAACBBCCBA

tttttt
ttttfttttfttttf

a
−−−

−+−+−
=  

       
))()((

)()()( 222222

ACCBBA

BACACBCBA

tttttt
ttfttfttf

b
−−−

−+−+−
=  

       
))()((

)()()(

ACCBBA

BACACBCBA

tttttt
ttfttfttf

c
−−−

−+−+−
−=  

 

となる。 

  ２次関数（５）は、 

                         
c

b
2min −=λ                          （６） 

のときに最小値 

                         a
c

b
h +−=

4

2

min                     （７） 

をとる。 

２次関数（５）式による近似を用いると、（６）式で与えられる変数値 minλ=x が最

小値を与える値の推定値となる。この推定は、３点の区間 ],[ CA tt の幅が小さいほどよ

い結果が期待される。よって、 minλ の値を用いて３点を含む区間の幅を小さくすること

を考える。関数 )(xfy = の minλ=x における値 )( minmin_ λff L = と Bf を比較して、区間

],[ CA tt を区間 ],[ BA tt または ],[ CB tt に絞る。この最小値をとる区間を小さく絞っていく
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手続きを繰り返して、 )(xfy = が最小値をとる変数値 minxx = を求める。具体的には次

のような手順になる。 

 

（Ⅰ）関数 )(xfy = が最小値をとる区間を ],[ CA tt とする。この区間は、

手続き MinOneDim な ど に よ っ て 求 めることができる。

2/)( CAB ttt += とおき、 )( AA tff = 、 )( BB tff = 、 )( CC tff = と

おく。 

（Ⅱ）３点、 ),( AA ft 、 ),( BB ft 、 ),( CC ft 、を通る２次関数を求め、その

最小値 minh と最小値を与える変数値 minλ を式（７）と（６）によっ

て求める。 

（Ⅲ）（Ⅲａ） )( minmin_ λff L = が minh に十分に近い値ならば、 minλ=x を

関数 )(xfy = の最小値 min_Lf を与えるものとして終了する。 

（Ⅲｂ） )( minmin_ λff L = が minh に十分近い値でないならば、次のス

テップ（Ⅳ）に進む。 

（Ⅳ）（Ⅳａ） Bt>minλ のとき 

（Ⅳａ－1） BL ff <min_ ならば CB txt << min と考えて、 Bt 、 minλ 、

Ct を次のステップでの新しい At 、 Bt 、 Ct の値とする。これ

に合わせて、 Bf 、 min_Lf 、 Cf を次のステップでの新しい Af 、

Bf 、 Cf の値とする。ステップ（Ⅱ）に戻る。 

（Ⅳａ－2） BL ff >min_ ならば minmin λ<< xt A と考えて、 At 、

Bt 、 minλ を次のステップでの新しい At 、Bt 、Ct の値とする。

これに合わせて、 Af 、 Bf 、 min_Lf を次のステップでの新し

い Af 、 Bf 、 Cf の値とする。ステップ（Ⅱ）に戻る。 

（Ⅳｂ） Bt<minλ のとき 

（Ⅳｂ－１） BL ff <min_ ならば BA txt << min と考えて、At 、 minλ 、

Bt を次のステップでの新しい At 、 Bt 、 Ct の値とする。これ

に合わせて、 Af 、 min_Lf 、 Bf を次のステップでの新しい Af 、
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Bf 、 Cf の値とする。ステップ（Ⅱ）に戻る。 

（Ⅳｂ－２） BL ff >min_ ならば Ctx << minminλ と考えて、 minλ 、

Bt 、 Ct を次のステップでの新しい At 、 Bt 、 Ct の値とする。

これに合わせて、 min_Lf 、 Bf 、 Cf を次のステップでの新

しい Af 、 Bf 、 Cf の値とする。ステップ（Ⅱ）に戻る。 

 

（Ⅱ）～（Ⅳ）のステップを繰り返して minx を求めるが、この手順がうまく行かない

ときは Golden section 法に切り替える。 

ステップ（Ⅲ）において minminmin_ )( hff L == λ ならば、点 ),( min_min Lfλ はステップ

（Ⅱ）で求めた２次関数上にあるので、このときステップ（Ⅳ）に進んで新しく３点 At 、

Bt 、 Ct を取り直して２次関数を求め直したとしても前の古い２次関数と同じものにな

る。したがって、この新しく求めた２次関数の minλ は古いものと同じ値となり、 minλ の
値は更新されず、３点 At 、 Bt 、 Ct （このうちの一つが古い minλ である）のいずれかに

一致する。このことを考慮して、ステップ（Ⅲ）における収束判定条件として

「 minminmin_ )( hff L == λ 」を採用している。 

上の方法で minx を求める手続き MinByQuad もユニットファイル UOptOneDim.pas に用

意した。手続きヘッダーは次のようになっている。 

 

            procedure  MinByQuad( L_b, U_b  : extended; 

                                  f         : TFunc; 

                                  accf      : extended; 

                                  var 

                                    opt_x   : extended ); 

 

パラメータは Golden section 法の手続き MinByGolden の場合と同様であるが、ステ

ップ（Ⅲ）での収束判定条件に用いる、関数値 )( minmin_ λff L = と近似に用いた２次関

数の値 minh の差に関する基準を、精度の基準値 accf として設定するようになっている。 

手続き MinByQuad において Quadratic interpolation 法がうまく行かないときは

Golden section 法が適用されるが、これらの計算の途中経過は、手続き MinByQuad 内

でコメントとしてあるフォーム FOptOneDim の生成などの箇所のコメント記号、｛ ｝や

//など、をはずして Memo コンポーネントへの表示や ShowMessage 手続きが実行される
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ようにすることによって見ることができる。 

手続き MinByQuad による式（１）で与えられる関数の最小値を与える変数値の求め方

は、Golden section 法の手続き MinByGolden による方法と同じようになる。MinByGolden

の呼び出し 

 

MinByGolden( L_x, U_x, f, 1.0e-9, 1.0e-19, opt_x ); 

 

を、次のように MinByQuad の呼び出し 

 

MinByQuad( L_x, U_x, f, 1.0e-17, opt_x ); 

 

に変更する。収束判定条件に使われる精度は、変数値についてのものではなく、関数値

に関するものなので、Extended 型の精度に近い 1.0e-17 を設定している。 

  この MinByQuad の使用例をプロジェクト PQuadratic.dpr として用意した。上の

MinByQuad による計算結果は、図６のように表示される。 

 

図６  プロジェクト PQuadratic.dpr の実行結果 

 

地震警報の基準 

最小値を求める例として、地震の警報を出す基準値の設定について考えてみる。この

考え方は、地震警報に限らず、何らかの曖昧さを伴う事態についての判断・決断をモデ

ル化したものである。 

地震計の針の振れ具合とか地面の動き方とか、地震の予知に用いられる指標は、これ

くらいの強さなら確実に地震が起きる、あるいは絶対に地震は起きない、というような

ものではないようである。いま、予知で用いられる指標を簡略化して１つの数値 Ix で

表わされているとする。この Ix は、地震の心配がないときは小さい値であるが、地震

が起きるときは大きな値をとるものとする。しかし、Ix にはノイズが含まれていて、

Ix の値はランダムに変動しているものとする。地震の心配がないときでも Ix の値は大
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きくなることもあり、地震が起きるのに Ix の値は小さいということもありえるとする。

つまり、Ix の値によって確実に地震の予知を行うことができないということである。

地震が起きないときの Ix の値は平均０、分散１の正規分布に従い、地震が起きるとき

の Ix の値は平均 3.5、分散１の正規分布に従っているとする。したがって、Ix の値が

-1 などのように小さいときは地震の起きる可能性は小さく、Ix の値が６などのように

大きい値のときは地震の起きる可能性は高いと考えられる。しかし、Ix が２ぐらいの

ときは、地震が起きるのか起きないのかはっきりしない。地震予知の警報を出すために

は、基準値ｃを設定しておいて、Ix の値がｃより大きくなったら警報を出すというよ

うに決めておく必要がある。ｃをどのくらいの値に設定しておくとよいのであろうか？

ｃの値が小さすぎるときは、本当は地震の起きる可能性はないに等しいが（安全のため

に）警報を出しておいた、ということが頻繁に生じるようになり迷惑なことになる。逆

にｃの値が高すぎると、地震が起きるのに警報を出さなかったということになる危険が

高くなる。 

地震が起きないときに警報を出すと、生活に混乱が生じてそれに伴う損失が予想され

る。この損失の大きさが何か１つの数値で表わされるものとして、それを

)|( 地震無し警報有りV で表わしておく。地震が起きないときに警報を出さない場合は、

生活が普通に行われ生産的な活動が営まれる。その生産的な活動の効用も１つの数値

)|( 地震無し警報無しV で表わすが、損失（地震の被害）の方を正の値で表わすと効用

（生産的な活動の成果）の方は負の値で表わすことになる。 

地震が起きないときに Ix の値がｃより小さくなる（警報を出さない）確率を

)|(Pr 地震無し警報無しob で表わすと、ｃより大きくなる（警報を出す）確率は

)|(Pr1 地震無し警報無しob− となる。したがって、この場合の損失と生産的な活動の

成果をそれぞれの確率で重み付けた和である期待値 )(地震無しEV は 

 

  )(地震無しEV )|()|(Pr 地震無し警報無し地震無し警報無し Vob=  

                  )|()}|(Pr1{ 地震無し警報有り地震無し警報無し Vob−+  

 

となる。 

地震が起きる場合も同様に考えて、 

 

  )(地震有りEV )|()|(Pr 地震有り警報無し地震有り警報無し Vob=  

                    )|()}|(Pr1{ 地震有り警報有り地震有り警報無し Vob−+  

 

となる。地震が起きる場合は、警報があっても被害があるわけであるが、警報が無いと

きは非常に大きな被害が出ることになる。 

Ix の値を考えない場合、すなわち予知のための何らの情報も無いときの地震の起き
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る確率を )(Pr 地震ob で表わすと、警報を出す Ix の基準値をｃに決めた場合の全体的な

被害（生産的なものは負の値で表わす） )(cEV は、 

 

   )())(Pr1()()(Pr)( 地震無し地震地震有り地震 EVovEVovcEV −+=  

 

で表わされる。 

)(cEV はｃの関数になっている。この )(cEV が最小になるようにｃを決めるのがよ
いと考えられる。このｃを求めるプログラム例が PExpect.dpr である。 )(cEV の最小値

を与えるｃの値を、手続き MinByQuad を用いて Quadratic interpolation 法によって

求めている。 

PExpect.dpr の実行開始時に表示されるフォームのＧＯボタンをクリックすると、図

７のようなフォームが表示される。 

 

 

図７ 値設定用フォームの表示 

 

「異常なし」の行が地震が起きない場合を表わす。「警報なし」の列に 

)|( 地震無し警報無しV の値を、「警報あり」の列に )|( 地震無し警報有りV の値を、確

率の列に１－ )(Pr 地震ob の値を設定する。確率の値は、和が１にならない値を設定し

ても、ＯＫボタンのクリック後、設定した値の比率で和が１になるように調整される。

図７のフォームでの )|( 地震無し警報無しV の値は、地震も警報も無い場合は生活・経

済が正常に営まれて社会的な活動が正の生産である、すなわち、負の被害であると考え

てー１００と負の値が設定されている。 

「異常あり」は地震が起きる場合の値である。地震が起きるのに警報が無いと大きな

被害が生じるとして１０００が設定されている。 

確率を設定する列には「異常あり」に対して 0.01 を設定して、地震の起きる（主観

的）確率を地震が起きない確率の約 1/100 としている。 

図７の設定でＯＫボタンをクリックすると、計算結果が図８のように表示される。 
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図８  基準値ｃと確率の表示 

 

図８の画面において、上の分布のグラフが地震が起きないときの Ix の分布を、下の分

布が地震が起きるときの Ix の分布を表わしている。図８では、それぞれの分布の

44.2≈c の位置に赤い縦線が引かれている。上の方の地震が起きないときの分布では

「 cIx < 」の領域が緑で塗り潰されている。この領域で表わされる確率が地震が起きな
いときに（すなわち、正しく）警報を出さない確率 )|(Pr 地震無し警報無しob になる。

下の地震が起きるときの分布では「 cIx > 」の領域が黄色で塗り潰されている。この領
域の確率は )|(Pr 地震有り警報有りob を表わす。図８の画面の下側には、求められた基

準値ｃの値と、図７で設定された値が表示されている。 

図８のフォームのＧＯボタンをクリックすると、再び図７の値設定用のフォームが表

示される。値を設定し直してＧＯボタンをクリックすると、再設定した値での計算結果

が表示される。 
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