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極値探索－２ 
多変数関数：偏導関数を用いる場合 

 

ｎ変数の関数 ),,( 1 nxxfy L= の極小値を求めることを考える。 

 

最急降下法 

極小値を求めるための簡単な方法として、まず、適当な点 ),,( 0010 nxx L=x をとり、そ

こから関数値が減少する方向に 0x を変化させるということが考えられる。関数の増加が最

大である方向は、次の傾き 
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で与えられる。したがって、減少が最大である方向は、その逆方向 )( fgrad− である。こ

の )( fgrad− の方向に 0x を変化させて極小になる点 1x を求める。このときの極小値は、

)( fgrad− の方向の直線で求めるので、１変数の関数の最小値を求める方法が使える。 1x が

求まると、次にこの 1x における )( fgrad− を算出して、その方向に 1x を変化させ関数が極

小になる点 2x を求める。このように、 )( fgrad− の方向での極小値の探索を繰り返して、

各探索での極小値を与える点を・・・、 ix 、 1+ix 、・・・と求めていく。この探索を繰り返

して、 )( fgrad− が０とみなせる点 kx 、あるいは 1kk +≈ xx となって探索をすすめても次

の点がほとんど変わらない点 kx に到達したとき、この点 kx は極小点であると考えられる。

この、減少が最大である方向に探索を進める方法は、最急勾配法（steetest descent method）
（１）、（２）と呼ばれている。 
最急勾配法で関数 
                2

2
2
121 4),( xxxxfy ⋅+==  

の極値探索を点 )1  ,1( から行うと図１のようになる。探索はジグザグコースで進みながら最

小値を与える極小点 )0  ,0( に近づいていることが分かる。探索がジグザグコースでなくも

っとスムーズに進むようにするためには、探索方向を )( fgrad− から少しずらす必要があ

る。そのような方法として、共役勾配法がある。 
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図１ 最急勾配法 

 
共役勾配法（Fletcher-Reeves method） 

共役勾配法と呼ばれている方法では、探索方向を )( fgrad− からずらして探索の効率化

を図っている。 

)(xfy = が 2 次関数 CxBAxx tt ++
2
1

である場合には、それぞれの探索ステップにおけ

る探索方向（例えば、k 番目と j 番目のステップにおける探索方向 kS と jS ）がお互いに行

列 Aに関して共役、すなわち 0=j
t
k ASS 、であるようにすると効率よく探索が行える。一

般の関数に対しては、Fletcher－Reeves の方法（１）では、次のようにして探索方向を決め

ている。 
 

（１）まず、 1=i とおき、 
               )(1 fgrad−=Δ 、  )(1 fgradS −=  
    とする（初期設定）。 

（２） )( iSxf λ+ の値を最小にするλ を
*λ とおく。 
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（３） iSx *λ+ を次の新しい x とする。この新しい x とその関数値 )(xf の変

化の様子を調べて、x が極小点に収束したかどうかの判定をする。収束

したと判定されたときは探索を終了する。収束したと判定できないとき

は（４）に移る。 
（４） 1+= ii とおく。 
（３） )( fgradi −=Δ を求める。 

               1−+Δ= iiii SS β                          （１） 

    とおく。ただし、 11 −− ΔΔΔΔ= i
t
ii

t
iiβ である。 

（５）（２）に戻る。 
 
上の（１）式によって探索の方向を決めると、関数 )(xf が２次関数のときは、各探索方

向 iS が共役になる（１）。 )(xf が２次関数でない場合でも、局所的に２次関数でよく近似で

きるときは、探索方向 iS を共役にとることにより効率よく探索が行えることが期待できる。

)(xf がｎ個の変数の２次関数であるときは、高々ｎ回の探索で極小値に達することができ

る（２）。２次関数でない場合は、ｎ回の探索で極小値に達するとは限らない。ｎ回の探索で

極小値に達することができなかった場合は、ステップ（１）に戻ってやり直す（restart）。 
図１の場合の極値探索を、共役勾配法で行うと図２のようになる。 

 
図２ 共役勾配法による極値探索 
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図１の場合と異なり、図２では２回目の探索の方向が中心（極小値の位置）に向かって

いることが分かる。 
図１はプログラム PDrawPathSteep.dpr により、図２はプログラム PDrawPathConj.dpr

により描くことができる。それぞれのプログラムの実行開始時に表示されるフォームの GO
ボタンをクリックすると、図１あるいは図２の描画が行われる。 

Fletcher－Reeves method によって極小値を求める手続き MinByFR をユニットファイ

ル UOptMultDim.pas に用意した。 
手続き MinByFR のヘッダーは、次のようになっている。 
 

             procedure MinByFR( f  : TOptFunc; 

                                df : TOptDFunc; 

                                n  : Longint; 

                                var x0 : TOptVector; 

                                criterionX, //  >= 1.0e-11 

                                criterionF  //  >= 1.0e-17 

                                          : Extended ); 

 

第１パラメータｆに極小値を求める関数を、第２パラメータ df にｆの偏導関数 x∂∂f を

設定する。それぞれの関数の型は以下のように宣言されている。 
 

        TOptVector = array[1..NDimOpt] of Extended;  

        TOptFunc   = function( x : TOptVector; n : Longint ) : Extended; 

        TOptDFunc  = function( x : TOptVector; n : Longint ) : TOptVector; 

 

ここで、ユニット UOptMultDim では NDimOpt＝１０と宣言されている。１０を超える

変数を扱うときは、この値を変数の数以上のものに設定する。 
第３パラメータｎには、変数の個数を設定する。第４パラメータには、探索における初

期値を設定した変数を表す配列を置く。探索が終了すると、極小値を与える変数値がこの

パラメータ（配列）に返される。 
第５、第６パラメータには、探索における収束の判定基準を設定する。CriterionX には、

変数の変化量に対する基準値を設定する。１変数の場合の基準と同じく、計算精度

（Extended 型の場合は 19～20 桁）の半分くらいが精度の限界と予想される。詳しくは、

１変数の場合の極値探索を扱っているホームページにおいて解説している。CriterionF に

は、関数値の方の変化量の基準値を設定する。 
例えば、次の関数 
               0.1)1(8)1(),( 2

2
2

121 +−⋅+−= xxxxf                   （１） 
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の極小値を MinByFR を用いて求めるときは次のようにする。 

まず、関数宣言を 
 
     function FCheck( x : TOptVector; n : Longint ) : Extended; 

       begin 

                 FCheck:=sqr(x[1]-1) + 8*sqr(x[2]-1) + 1.0; 

       end; 

 

と行う。偏導関数は次式 

 

                     )1(2 1
1

−=
∂
∂ x
x
f

 

                     )1(16 2
2

−=
∂
∂ x
x
f

 

 

で与えられるので、偏導関数の計算を行う関数を次のように宣言する。 

 

      function DFCheck( x : TOptVector; n : Longint ) : TOptVector; 

        begin 

                  Result[1]:=2*(x[1]-1); 

                  Result[2]:=16*(x[2]-1); 

        end; 

 

  上の宣言のもとで、手続き MinByFR を次のように呼出す。 

 

MinByFR( FCheck, DFCheck, 2, x, 1.0e-9, 1.0e-17 ); 

 

但し、MinByFR を呼出す前に、例えば 
 

x[1]:= 5.0;     x[2]:= 5.0; 

 
と配列ｘに初期値を設定しておく。 
プロジェクト PCheckOpt.dpr では、（１）式の関数の極小値を上のような手順で求めて

いる。このプロジェクトを実行すると、図３のようにフォームが表示される。 
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図３ プロジェクト PCheckOpt.dpr の実行開始時のフォーム 

 
「FR」ボタンのクリックで MinByFR による極値探索が始まり、計算結果が図４のように

表示される。 

 
図４ 実行結果の表示 

 
（１）式の関数の最小値 1.0 を与える変数値 0.121 == xx が表示されている。 

図３において、「FR」ボタンをクリックすると画面が一瞬ちらつく。これは MinBｙBR
の実行時に、計算の途中結果を表示するフォームが表示されているからである。計算が一

瞬で終了するため、画面のちらつきとなっている。探索が長く掛かる時は、このフォーム
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上の Memo コンポーネントに表示される途中経過をみることによって、探索の進み具合が

わかる。しかし、このフォームを表示したくない時は、MinByFR の呼び出し時に実行され

るフォームの生成と、終了時に実行されるフォームの廃棄、および Memo コンポーネント

に表示する手続きを、すべてコメント記号//などを使ってでコメントにしておく。コメント

としておくと、また途中経過表示用のフォームを表示したくなったときは、そのコメント

記号をはずすと表示できる。フォームの生成が行われる箇所は MinBｙFR の実行開始にお

ける 
 

       FOptMultiDim:=TFOptMultiDim.Create(application); 

       FOptMultiDim.Visible:=true; 

 

であり、フォームの廃棄を行っている箇所は実行終了における 
 

FOptMultiDim.Close; 

 

である。Memo コンポーネントへの表示は、 
 

Display(表示文字列); 

 

というように、手続き Display の呼び出しによって行っている。表示を行わないときは、

これらの文の前に//を付けてコメントとする。 
 
Newton 法 

勾配法では、関数の減少する方向に探索が進められる。最急勾配法では、その点におけ

る減少が最大である方向、 )( fgrad− 、に探索が進められ、共役勾配法では探索を滑らか

にするために各探索方向が共役になるようにとられた。勾配は接平面、すなわち１次関数

で極小値を求めている関数を近似する考え方であるといえる。関数を２次関数で近似して

極小値の探索を行うものとして Newton 法がある。関数 )(xf の点 0x における２次関数によ

る近似は次式で与えられる（２）。 

          dxddxxdx ⋅∇⋅⋅+⋅∇+≈+ )(
2
1)()()( 0

2
000 ffff tt               （２） 

ここで、 )( 0xf∇ は勾配（gradient） )( fgrad であり、 )(2 xf∇ は 2 次偏導関数を要素とす

るヘッセ行列（Hessian Matrix） 
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である。 
2 次関数 

Cxxbxax ttg
2
1)( ++=  

の最小値は 

                          bCx 1
0

−−=                            （３） 

で与えられる。これは、次のようにして導くことができる。 
)(xg の勾配は、次式で与えられる。 

tg Cxb
x
x +=

∂
∂ )(

 

 
最小値を与える点 0x では勾配は０なので、次式が成り立つ。 

00 =+ tCxb  

上式より（３）式が導かれる。 
Newton 法では（３）式によって極小値の探索を進める。このとき２次関数による近似（２）

式を用いるので、 
)(xb f∇= 、  )(2 xC f∇=  

とおいた次の式 

                    { } )()( 12
1 iii ff xxx ∇⋅∇−= −

+                    （４） 

 
によって、点 ix における２次関数（２）式による近似を用いた探索（（３）式、すなわち（４）

式による極小値の探索）を行う。（４）式によって求めた２次関数の極小（最小）点 1+ix は、

２次関数よる近似（２）がよい場合には点 ix における関数値 )( if x より小さい値

)()( 1 ii ff xx <+ を与えるが、近似が良くない場合には )()( 1 ii ff xx >+ となることがある。

また、近似（２）がよくても、（２）式の右辺の２次関数が上に凸（お椀を伏せた形）のと

きは、（３）式は最大値を与えるものとなり、（４）式で与えられる点 1+ix の関数値は点 ix に

おける関数値 )( if x より大きくなる可能性が高い。これらのことを考えて、手続き
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MinByNewton では次のようにして（４）式を用いた極小値の探索を行っている。 
 

（１）探索の初期値を 0x とし、 0xx =i とおく。 
（２） )( if x∇ を求める。 )( if x∇ の大きさが十分に小さければ極小値に達し

たとして終了する。 

（３） )(2
if x∇ を求め、その逆行列{ } 12 )( −∇ if x を計算する。 

（３ａ）逆行列{ } 12 )( −∇ if x が求まったときは、 

             { } )()( 1
ii ff xxS 2 ∇⋅∇−= −

 

        を極小値の探索方向とする。 

（３ｂ）逆行列{ } 12 )( −∇ if x が求まらなかったときは、 

             )( if xS −∇=  
        を探索方向とする。 

（４）ステップサイズｓを 1.0 とおく。 
（４ａ） )()( ii fsf xSx <⋅+ であれば、 Sx ⋅+ si を新しく ix とおいて

（２）に戻る。 
       )()( ii fsf xSx <⋅+ でないときは（４ｂ）にすすむ。 
（４ｂ） )()( ii fsf xSx <⋅− であれば、 Sx ⋅− si を新しく ix とおいて

（２）に戻る。 
       )()( ii fsf xSx <⋅− でないときは（４ｃ）にすすむ。 
（４ｃ）ｓの大きさを１／２にする。ｓの値が十分に小さくなっていると

きは極小値に達しているとみなして探索を終了する。ｓがまだ十

分に小さくないときは（４ａ）に戻る。 
 

上 の 手 順 で 極 小 値 を 求 め る 手 続 き MinByNewton を ユ ニ ッ ト フ ァ イ ル

UOptMultDim.pas に宣言した。手続き MinByNewton のヘッダーは、次のようになって

いる。 
 

          MinByNewton( f   : TOptFunc; 

                       df  : TOptDFunc; 

                       ddf : TOptDDFunc; 

                       n   : Longint; 

                       var x0 : TOptVector; 
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                       criterionX, //  >= 1.0e-11 

                       criterionF  //  >= 1.0e-17 

                              : Extended ); 

 
第１パラメータに極小値を求める関数 f を設定する。第２、第３パラメータには勾配

)(xf∇ とヘッセ行列 )(2 xf∇ を与える関数を設定する。第４パラメータには変数の数を設

定する。第５パラメータには変数を表わす配列を設定するが、この配列には極値探索の初

期値を設定しておく。MinByNewton の終了時には、探索した極値を与える変数値が第５パ

ラメータに設定した配列に返される。第６、第７パラメータには、極値探索における収束

判定のための変数の変化量と関数値の変化量の基準値を設定する。 
手続き MinByNewton によって式（１）の関数の極値探索を行うときは、手続き MinByFR

のときと同じように関数 FCheck と勾配を与える関数 DFCheck を宣言しておく。さらに、

ヘッセ行列を与える関数を 
 

     function DDFCheck( x : TOptVector; n : Longint ) : TOptMat; 

       begin 

              Result[1,1]:=2.0; 

              Result[1,2]:=0.0; 

              Result[2,1]:=0.0; 

              Result[2,2]:=16.0; 

       end; 

 
と宣言しておく。ここで、型 TOptMat は、ユニット UoptMultDim に 
 

TOptMat    = array[1..NDimOpt, 1..NDimOpt] of Extended; 

 

と宣言されている。 
上の宣言のもとで、配列ｘに適当な初期値を設定してから手続き MinByNewton を 
 

       MinByNewton( FCheck, DFCheck, DDFCheck, 2, 

                             x, 1.0e-9, 1.0e-15 ); 

 
と呼出すと、配列ｘに極小値を与える変数値が返される。 
プロジェクト PCheckOpt.dpr では、初期値を、 
 

x[1]:= 5.0;      x[2]:= 5.0; 
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としている。このプロジェクトの実行開始時のフォームは図３のようになっているが、

「Newton」ボタンをクリックすると手続き MinByNewton による極小値の探索が始まり、

計算結果は図４のように表示される。MinByNewton 実行時の画面のちらつきをなくすため

には、MinByNewton の実行時のフォームの生成と廃棄、およびそのフォーム上の Memo
コンポーネントへの表示をコメントなどにして無効としておく。 
 
準 Newton 法（DFP 公式と BFGS 公式） 

Newton 法においては、ヘッセ行列 )(2 xf∇ が必要である。ヘッセ行列は、２次の偏導関

数を要素とするものである。探索方向の計算において、ヘッセ行列の逆行列{ } 12 )( −∇ xf が

用いられている。この逆行列を、ヘッセ行列 )(2 xf∇ の逆行列として直接与えずに、探索の

各ステップで逐次近似していく方法がある。このような方法として、Davidon－Fletcher
－Powell（DFP）公式、および Broyden－Fletcher－Goldfarb－Shanno（BFGS）公式が

よく知られている（２）。これらの方法では、探索は基本的には Newton 法と同じ手順である

が、{ } 12 )( −∇ xf の逐次近似の計算と、この逐次近似の性質をよくするために各探索ステッ

プにおける探索方向上での１次元の極値探索の精度を上げることが必要になる。具体的に

は次のような手順になる。 
 
DFP 公式による場合： 
 

（１）変数の初期値を 0x 、探索回数を 0=k とおく。 

（２）{ } 12 )( −∇ xf の近似の初期値 0H を単位行列 I とおく。 

（３）ｋ回目の探索における変数の出発点 kx での勾配ベクトル )( kf x∇ を求め

る。 )( kf x∇ の大きさが十分に小さいときは、極小値に達しているとみなし

て探索を終了する。 )( kf x∇ の大きさが十分に小さくないときは、探索方向

kS を次式で与える。 
                )( kkk f xHS ∇⋅−=  
（４）探索方向 kS での１次元の探索を行う。すなわち、 )( kkf Sx ⋅+ λ を最小

にするλ を求め、 kkk Sxx ⋅+=+ λ1 とおく。 

（５） nk > のときは 0←k とおいて（２）に戻る。ここで、ｎは変数ベクト

ルの次元である。 
（６）点 1+kx における勾配ベクトル )( 1+∇ kf x を求める。 )( 1+∇ kf x の大きさが

十分に小さいときは、極小値に達しているとみなして探索を終了する。
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)( 1+∇ kf x の大きさが十分に小さくないときは、 1+kH を次式（DFP 公式）

で与える。 

            
( )( )

( )kk
t
k

t
kkkk

k
t
k

t
kk

kk yHy
yHyH

ys
ssHH −+=+1  

   ここで、 kkk xxs −= +1 、 )()( 1 kkk ff xxy ∇−∇= + である。 

（７） 1+← kk とおいて（３）に戻る。 
 

BFGS 公式による手順は、ステップ（６）における kH の更新を次式で行うことを除いて、

上の DFP 公式によるものと同じである。 
 

BFGS 公式： 

       
( ) ( )
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t
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kk ys
syHyHs
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yHyHH 11  

 
DFP 公式による極小値の探索を行う手続き MinByDFP をユニットファイル

UOptMultDim.pas に宣言した。MinByDFP のヘッダーは、次のようになっている。 
 

        procedure MinByDFP( f   : TOptFunc; 

                            df  : TOptDFunc; 

                            n   : Longint; 

                            var x0 : TOptVector; 

                          criterionX, //  >= 1.0e-11 

                          criterionF  //  >= 1.0e-17 

                                    : Extended ); 

 
 つまり、Fletcher－Reeves 法による探索を行う手続き MinByFR と同じである。使用法も

同じで、MinByFR のときと同じように関数と勾配の宣言を行ってから、次のように呼出す。 
 

MinByDFP( FCheck, DFCheck, 2, x, 1.0e-9, 1.0e-15 ); 

 
BFGS 公式による手続き MinByBFGS もユニットファイル UOptMultDim.pas に宣言し

た。この手続きのヘッダーも 
 

         procedure MinByBFGS( f   : TOptFunc; 
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                              df  : TOptDFunc; 

                              n   : Longint; 

                              var x0 : TOptVector; 

                              criterionX, //  >= 1.0e-11 

                              criterionF  //  >= 1.0e-17 

                                      : Extended ); 

 
となっていて、MinByFR と同じである。使用法も同じように、例えば 
 

MinByBFGS( FCheck, DFCheck, 2, x, 1.0e-9, 1.0e-15 ); 

 
と呼び出す。 
手続き MinByDFP と MinByBFGS の使用例も、プロジェクト PCheckOpt.dpr にある。

実行開始時のフォーム（図３）において、「DFP」ボタン、あるいは「BFGS」ボタンをク

リックすると、MinByDFP あるいは MinByBFGS による（１）式の関数の極小値の探索が

始まり、計算結果が図４のように表示される。 
 
感覚の尺度の作成 
極値探索の例として、感覚の強さを表わす尺度の作成を行ってみる。重さや長さなど物

理量を表わす場合には、グラムｇやメートルｍなどの単位によって、100g の重りとか１ｍ

の棒というように表わしている。音の大きさとか物の重さの感じという感覚的なものも量

として表わすことができると考え、これらを数値で表わしたものは（感覚の）尺度と呼ば

れている。物理量と感覚の尺度の関係を表わす関数としては、べき関数がよく知られてい

る（３）。ここでは、点の数とその数の多さの感じの関係を調べる簡単な実験について説明す

る。 
ｎ個の点の数の多さの感じを表す量をφ で表す。点の数ｎとその多さの感覚量φ がべき関

数の関係にあるとは、次の関係が成立することをいう。 
 

γβαφ )( += n  
 
上式では、物理量が点の個数なのでｎで表わされているが、一般には物理量は重さや長

さなどの連続量なので、物理量の方はϕ で表わして、 

 
                         γβϕαφ )( +=                     （５） 
 

というように書かれる。 
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  （５）式において、α は感覚量の単位によって決まるものである。物理量の場合でいう

と、ｍを単位としているものをｃｍを単位とするものに換えると数値は１００倍になる。

感覚量の場合も、どの量を数値１で表わすのか（単位の決定）によってα の値が決まる。

式を簡単にするために、ここでは 1=α であるように単位を決めるものとする。物理量と感

覚量の本質的な関係は、 β とγ によって表されていると考えられる。 β− は、感覚量φ が

０になる物理量ϕ を表わす。γ の値が大きい程、ϕ の増加に伴うφ の増加は急激になる。γ
の値は、面の大きさ（広さ）の感覚の場合で 0.7、電気ショックの場合で 3.5 となっている

（３）。面の広がりの感じは、物理的な面の大きさ（面積）の増加に対して、広さの感じの方

は緩やかであるといえる。電気ショックの場合は、電流の増加に対してショックの大きさ

は急激に強くなるといえる。 
  β とγ の値を決めるための実験の１例として、以下のものがある。 

幾つかの点がランダムに配置されたパターンをディスプレイの左側に表示する。右側に

も同じようなランダムな点のパターンを表示するが、右側の点の数の大きさの感じが左側

のものの半分であるように調節するものとする。左側の点の数が Lϕ 、右側の点の数が Rϕ の

とき、右側の点の数の感じが左側の半分であると感じられたとする。左側および右側の点

の数の感じを表わす感覚量を Lφ および Rφ で表わすと、右側の感じが左側の半分であるとい

うことは 
 

RL φφ 2=  
 

が成り立つということである。 
上式と（３）式から次式を得る。 
 

γγ βϕβϕ )(2)( +=+ RL  
これより、 
                   )(2 /1 βϕβϕ γ +=+ RL  
                   ββϕϕ γ −+= − )(2 /1

LR  
                      )15.0(5.0 /1/1 −+= γγ βϕ L                （６） 
 
を得る。左側の点の数 Lϕ に対して、数が半分であるという感じを与える右側の点の数 Rϕ が

理論的に（６）式で与えられる。この理論値 Rϕ と実験データの値との差ができるだけ小さ

くなるように β とγ の値を決める。 
左側の点の数として、 1Lϕ 個、・・・、 Lkϕ 個のｋ種類のパターンを用いたとする。左側

の点の数 Liϕ に対して、半分の感じと判断された右側の点の数を iD で表わす。また、左側

の点の数 Lϕ に対して、（６）式で与えられる右側の数 Rϕ を関数として 
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             )15.0(5.0)( /1/1 −+== γγ βϕϕϕ LLR p  
 
と表わす。このとき、データ iD と理論値 )( Lp ϕ との差の 2 乗和 SSE は、次式で与えられ

る。 

                       ∑
=

−=
k

i
Lii pDSSE

1

2))(( ϕ                     （７） 

 
SSE を β とγ の関数とみて、SSE を最小にする β とγ の値を極値探索法によって求める。

ここでは手続き MinByFR（Fletcher－Reeves の方法）を用いてみる1。この方法において

は、勾配、すなわち、1 次の偏導関数が必要である。（７）式の偏導関数は 
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で与えられる。ここで、 
 

                  15.0
)( /1 −=

∂
∂ γ

β
ϕ Lip

 

                  ( )2/1 5.0log5.0)(
)( −−⋅⋅⋅+=

∂
∂ γβϕ

γ
ϕ γ

Li
Lip

 

 
である。 
 
 
 
感覚尺度構成のための実験 

Liϕ 個の点のパターンに対して、その半分の感じを与える点の数 iD を求める実験を行う

プログラム PExpPower.dpr を用意した。このプログラムを実行すると、図５のようなフォ

ームが表示される。 
 

                                                  
1 γ/15.0=a 、 )15.0( /1 −= γβb とおくと（６）式は ba LR += ϕϕ となる。このとき、（７）

式で与えられる SSE を最小にするパラメータ値は回帰直線の係数として求めることができ

る。ここでは、極値探索法の使用例として SSE を最小にするγ と β の値を直接求めている。 
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図５ PExpPower.dpr の実行開始時のフォーム 

 
 
「GO」ボタンのクリックで、図６のフォームが表示される。 

 

図６  図５の「GO」ボタンのクリックで表示されるフォーム 

 
 
 
「ここをクリックして下さい」とあるところをクリックすると、図７の画面になる。 
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OKボタンのクリックで左側のドット数に対

する右側のドット数が記録され次に進む 

数値は試行数を表す 

右側のドット数が、Lキーあ

るいはSキーの押下で増加

あるいは減少する 

 
図７  図６の「ここをクリックして下さい」のクリックで表示された画面 

 
この画面において、右側のドットの数が左側の半分の感じになるように調整する。客観的

に個数がちょうど 1／2 のなるようにするのではなく、主観的印象として右の点の数が左の

半分ぐらいであるようにする。決して１つ１つ点を数えたりしてはならない。図７の場合

は、右の点の数は左の半分より多いので点を減らすことになる。Ｌキーを押すと点が１つ

１つ消えていく。減らし過ぎたときはＳきーを押すと点が増える。ＬキーとＳキーの操作

で点の増減を行い、右側の点の数がちょうど左側の半分になったと感じたら画面左上の「Ｏ

Ｋ(１)」と表示されているボタンをクリックする。（ ）内の数字１は、第１試行目（１回目

の点の数の調整）であることを表わしている。このボタンをクリックすると、右側の点の

数がデータとして保存されて、次のパターン（第２試行目）に移る。第２試行目も第１試

行目と同じ要領であるが、提示される点のパターンは異なる。右側の点の数が左側のもの

の半分に感じられるように調整した後、「ＯＫ(２)」ボタンをクリックして第３試行に進む。

試行数は、第２０試行まで用意されている。 
提示される点のパターンは毎回異なるが、左側に提示される点の数は、120 個、150 個、

190 個、240 個、300 個のうちのいずれかである。各試行において最初に提示される右側の
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点の数は、左のものと同じ個数か０個である。左側に提示されるそれぞれの点の数に対し

て４試行（すなわち、４回）、点の配置を変えたものがランダムな順序で提示される。つま

り、1 つの Liϕ に対して４つの iD がデータとして得られる。これら４つのデータ値 iD の中

央値を、それぞれの Liϕ に対して半分の感じを与える右側の点の数とする。これらの中央値

を、（７）式における Liϕ に対する iD としてＳＳＥを算出する。β とγ の値は、このＳＳＥ

値を最小にするものとして求める。 
左側の点の数が５種類であり、各個数が４回提示されるので、実験の総試行数は５×４

＝２０試行である。第２０試行目において「OK(20)」ボタンをクリックすると実験は終了

して、データの分析が始まる。 
 分析が始まると、まず、データと計算結果を書き出すテキストファイルの名前の設定を

求めるダイアログボックスが表示される（図８）。 
 

結果の出力用テキストファイル名を設定 

 
図８ 実験データと分析結果の書き出し用テキストファイル名の設定 

 
 
適当なファイル名を設定して「開く」ボタンをクリックすると計算が始まる。計算結果は

図９のように表示される。 
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図９ データの分析結果の表示 
 

β とγ の値は、画面左上に表示されている。図９の場合、 1<γ なので、
γβϕφ )( += の

グラフは上に凸になっている。このグラフは、画面では青の曲線で描かれている。横軸に

は、実験で用いた点の数 Liϕ の位置にドット数が表示され、緑の縦線が引かれている。縦軸

の目盛りは表示されていない。これは、φ の数値が（５）式のα に依存するという形で、

単位に任意性があるからである。ここでは、φ の相対的な大小の比率が意味をもっている。 
赤の横線は、 Liϕ を表わす緑の縦線の 1／2 のところから SSE の計算に用いた iD の値の

位置まで引かれている。赤の小円は、各 Liϕ に対して 1／2 の感じを与える数として得られ

た４つのデータ値を表わしている。 
 
変数変換 

β とγ の値を極値探索によって求めるとき、（５）式において、 0>γ かつ 0>+ βϕ の

制約がある。 Liϕ の最小値が１２０なので、 120−>β でなければならない。パラメータ β
とγ がこれらの制約条件を満たすようにするために、次の変数変換 

                          2120 b+−=β  
                          201.0 c+=γ  

を行っている。γ が 0.01 を加える形になっているのは、γ の値が０に近くなったとき実行

時演算エラーが生起する可能性があるからである。（７）式をｂとｃの関数とみて最小化

（極小化）を行う。このとき、ｂとｃには変域の制約がないので、手続き MinByFR によ

って SSE の最小値を与えるｂとｃを求めることができる。 
  変数変換後の勾配は、次のように与えられる。 
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ここで、 

b
db
d 2=β

、  c
dc
d 2=γ

 

である。 
この変数変換は、 β とγ のようにパラメータのとりうる値の範囲に制約がある場合だけ

ではなく、パラメータの値の絶対値が非常に小さい場合、あるいは非常に大きい場合にも

必要である。ユニット UOptMultDim に宣言されている極値探索の手続き MinByFR など

では、パラメータの値が絶対値で 0.01～1000 ぐらいの大きさのものが想定されている。こ

の範囲から大きく外れた値のときは、極値探索の精度が criterionX や criterionF で設定し

たものでうまくコントロールできない可能性がある。従って、例えば、パラメータu が 
 

1010−≈u   あるいは  1010≈u  
ぐらいのときは、 

uv ×= 1010   あるいは  uv ×= −1010  
 
と変数変換して、 vについての極値探索とする。上の変換により、 v の値は 0.1≈v となっ

ている。 
最初に極値探索を行うときは、極小値を与える変数値の大きさの見当が付かないことが

ある。このような場合は、取り敢えず変数変換を行わずにそのまま極値探索を行い、極小

値を与えるパラメータ値を求めてみる。得られた値が 0.01～1000 の範囲から著しく逸脱し

ていたときは、得られた値に合わせた変数変換を行い、極値探索をやり直せばよい。 
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