
岡本安晴 2001.2.4;2004.7

―1―

極値探索－３
多変数関数：偏導関数を用いない場合

偏導関数を用いずに極小値の探索を行うものとして、Rosenbrock の方法と Brent の方法

について説明する。これらの方法では、極小値を求めたい目的関数だけで極値探索が行え

るので、目的関数が複雑なときでも簡単に極小値を求めることができる。

Rosenbrock の方法

極値探索の効率化を図るために、Rosenbrock 法では探索の主方向をそれまでの探索方向

に適応させる方向に変えていく（１）。具体的には次のように探索を進める。

極小値を求める関数がｎ変数の関数),,(1 nxxfy L= であるとき、ｎ個の探索方向をとり、

それらを 1S 、・・・、 nS とする。これらの探索方向は、最初はｎ個の座標軸の方向にとっ
ておく（初期値）。ｎ個の探索方向に対して、順番に直線上の 1 次元極値探索を行う。

Rosenbrock の方法では、この１次元極値探索は予め設定されたステップサイズを基にして

おおまかに行われるが、ここではより効率的な探索が期待できる方法である２次関数の近

似を用いたより精密な探索を行う（１）、（２）。

1S から nS までの方向での１次元極値探索が終了したら、これらの探索方向ベクトルの更
新を行う。この更新後の探索方向が、更新前の探索の移動方向に対応するようにする。す

なわち、 iS 方向での移動量が iλ であったとき、 1S の新しい探索方向が探索における変数値

の全変化∑
=

n

i
ii S

1

λ に一致するようにとる。更新後、 1S の方向は、 1S から nS までの探索を全

て合わせた方向になる。２変数（ｎ＝２）の場合なら、 2211 SS λλ + の方向が更新後の新し

い 1S の方向となる（図１）。

図１ 1S 方向への移動と 2S 方向への移動の和が次の 1S 方向となる（２変数の場合）。

岡本安晴 2001.2.4;2004.7

―2―

2S の方向は、 1S の方向での探索による移動を除いたもの∑
=

n

i
ii S

2

λ と一致するようにする。

以下同様に、 jS の方向は jS から nS までの探索による移動の和∑
=

n

ji
ii Sλ の方向と一致する

ようにする。各探索方向、 1S 、・・・、 nS 、を新しく ∑
=

=
n

ji
iij SS λ で与えた後、正規直交

化を行う。

探索方向の更新後、新しい探索方向で探索を行う。この探索方向の更新と探索を極小値

に達したと判断されるまで繰り返す。

上の説明を手順としてまとめると、以下のようになる。

（１）変数の初期値を 0x 、探索方向 iS の初期値をｉ軸方向 ie とする。 ie はｉ
番目の要素が１、他の要素はすべて０のベクトルである。

（２）)(00 xff ← 、 0 xx ← 、 1 ←i とおく。矢印「←」は、右側の値を

左側に設定することを表わす。

（３）)(ii Sf λ+x を最小にする iλ を求める（１次元探索）。この探索は２次関
数による近似で行うが、２次関数による近似の方法がうまくいかないとき

は golden section 法に切り換える。

（４） ii Sλ+← xx 、 1 +← ii とおく。

 ni ≤ ならば（３）に戻る。

 ni > ならば（５）に進む。

（５）各 iλ の大きさが十分に小さい、あるいは関数値)(0xf から)(xf への変

化が十分に小さいときは、極小値に収束したとして探索を終了する。 iλ の
大きさ、および関数値の変化量が十分に小さくないときは、（６）に進む。

（６） nniiiii SSSS λλλ +++← ++ L11 、 ni ,,1L= とおく。これらの iS を、
以下のように Gram-Schmidt の直交化法で正規直交系にする。

（６ａ） 111 SSS ← 、 2 ←i とおく。ここで、記号 はベク

トルの長さを表わす。

（６ｂ） () (){ }1111 −−⋅++⋅−← iiiiii SSSSSSSS L

 iii SSS ←

 1 +← ii

 とおく。ここで、記号「・」は内積を表わす。

（６ｃ） ni ≤ ならば（６ｂ）に戻る。

 ni > ならば（７）に進む。

岡本安晴 2001.2.4;2004.7

―3―

（７） xx 0 ← 、 1 ←i とおいて（２）に戻る。

 ステップ（６）におけるGram-Schmidtの直交化法とは、１次独立なｎ個のベクトル、 1S 、・・・、

nS 、に対して、順番に長さを１に揃えながら、直交成分をとりだすものである。すなわち、
まず、 1S の長さを１にする（ステップ（６ａ））。次に、 1S と直交する成分を 2S から取り出
すために、 2S の 1S への正射影の長さを求める（図２）。

図２ 1S と直交するベクトル 1122)(SSSS ⋅−

この正射影の長さは、 1S の長さが１なので、内積 12 SS ⋅ で与えられる。したがって、 2S の

1S への正射影のベクトルは、 112)(SSS ⋅ で与えられる。このベクトルを 2S から引いたもの

1122)(SSSS ⋅− は、 2S と直交する。この 1122)(SSSS ⋅− の長さを１にしたものを新しい 2S
とする。ステップ（６ｂ）では、この内積によって正射影を求め、正射影の和との差とし

て直交ベクトルを求めるという手順を繰り返している。

上の手順で極小値を求める手続き MinByRosenbrock をユニットファイル UOptNoDiff.pas

に用意した。MinByRosenbrock のヘッダーは、次のように宣言されている。

 procedure MinByRosenbrock(f // 極小値を求める関数

 : TOptFunc;

 n // 変数の数

 : Longint;

 var x1 // 変数の配列

 : TOptVector;

岡本安晴 2001.2.4;2004.7

―4―

 crtrn_lambda, // 変数の変化量の基準

 crtrn_f, // 関数の変化量の基準

 max_lambda // 変数の変化量の初期値

 : Extended);

第１パラメータｆに極小値を探索する関数、第２パラメータｎに変数の総数、第３パラ

メータ x1に変数を表わす配列を設定する。第１パラメータの型 TOptFunc、第３パラメー
タの型 TOptVectorは、ユニットファイル UDefTypeOpt.pasにおいて

 TOptVector = array[1..NDimOpt] of Extended;

 TOptFunc = function(x : TOptVector; n : Longint) : Extended;

と宣言されている。
第３パラメータ x1 の配列には、MinByRosenbrock を呼出す前に極値探索の初期値を設
定しておく。MinByRosenbrockの実行終了時には、この第３パラメータに探索結果である
極小値を与える変数値が返される。第４、第５パラメータには、変数の変化量および関数

値の変化量に対する収束判定基準を設定する。変数値の変化量による収束判定は、探索方

向 iS における変化量（移動量） iλ の大きさが全て変数の変化量の収束判定基準より小さく
なったとき収束したとみなされる。関数値の変化量による収束判定は、 1S から nS までの探
索にわたる関数値の変化量が相対的に第５パラメータ crtrn_fで与えられた値以下であるか、
あるいは 1S から nS までの探索前と探索後の関数値の絶対値の和が第５パラメータ crtrn_f
以下であれば収束したとみなされる。変数値の変化量の基準 crtrn_lambdaは、１次元探索
のホームページにおける解説にあるように、小さすぎる値を設定しても無意味である。

MinByRosenbrock では Extended 型で計算が行われているので、Extended 型の有効桁数
２０桁の約半分くらいが目安になる。関数値の変化量の基準 crtrn_fの方は Extended型の
有効桁数に合わせた精度でも有効であるが、関数値の計算における計算誤差を考慮して

Extended型の有効桁数より少し下げた値を設定しておけばよい。探索における計算が長時
間か掛かる場合で Extended型ほどの精度が必要でないときは、必要な有効桁数に合わせて
Extended型の有効桁数より少ない桁数に対応した値を設定すると探索が速く終了する。
第６パラメータ max_lambdaには、最初の探索におけるステップサイズの初期値を設定
する。探索の出発点（第３パラメータ x1）からこれくらい移動すれば関数値が減少すると
思われる値を設定する。
手続きMinByRosenbrock]の使用例として、プロジェクト PCheck.dprでは、関数

2
1

23
1221)1()(100),(xxxxxfy −+−⋅== （１）

岡本安晴 2001.2.4;2004.7

―5―

の極小値の探索を行っている。上の関数は、 121 == xx のとき最小値０をとる。
プロジェクトのユニットファイル UCheck.pasにおいて、関数（１）を表わす関数 Cube

が次のように宣言されている。

 function Cube(x : TOptVector; n : Longint) : Extended;

 begin

 Cube:=100*sqr(x[2]-x[1]*sqr(x[1])) + sqr(1-x[1]);

 end;

上の関数宣言のもとで、RGOButtonClick の実行部において配列ｘの初期値の設定と

MinByRosenbrockの呼び出しがリスト１のように行われている。

リスト１ 手続き MinByRosenbrock の使用例

procedure TForm1.RGOButtonClick(Sender: TObject);

var x : TOptVector;

begin

 x[1]:=-1.2;

 x[2]:= 1.0;

 MinByRosenBrock(Cube, 2, x, 1.0e-11, 1.0e-15, 0.01);

 Label1.Caption:='x1 = '+FloatToStrF(x[1],ffGeneral,9,4)+

 ' x2 = '+FloatToStrF(x[2],ffGeneral,9,4);

 ExitButton.SetFocus;

end;

計算結果は Label1に設定されるので、フォーム上に表示される（図 3）。

岡本安晴 2001.2.4;2004.7

―6―

図３ 実行結果の表示

RGOButtonClick は、プロジェクトの実行開始時に表示されるフォーム（図４）上の
Rosenbrockボタンのクリックで呼出される。

図４ PCheck.dpr の実行開始時のフォーム

手続きMinByRosenbrockを実行すると、探索の途中経過を表示するためのフォームが表
示される。この表示を行わないときは、手続きの実行開始時におけるフォームの生成の部

岡本安晴 2001.2.4;2004.7

―7―

分

 FOptNoDiff:=TFOptNoDiff.Create(application);

 FOptNoDiff.Visible:=true;

と実行終了時のフォームの廃棄の部分

FOptNoDiff.Close;

を、//などを用いてコメントとする。さらに、フォーム上の Memo コンポーネントに表示
を行う手続き displayの中も次のように

 procedure display(s : string);

 begin

 ;{ with FOptNoDiff.Memo1.Lines do

 begin

 while count > 20 do Delete(0);

 Add(s);

 end;}

 end;

コメントにしておく。これらのコメントとした部分は消去してもよいものであるが、コメ

ントにしておくと探索の途中経過の表示が必要となったときにコメント記号//などを取る
だけで表示可能となる。

Brent の方法

Rosenbrockの方法では、探索方向のベクトル、 1S 、・・・、 nS 、はお互いに直交してい
る。偏導関数を用いた極小値の探索では、探索方向を共役であるようにとることによって

探索の効率を高めることが期待されている。偏導関数を用いない探索法において、探索方

向を共役であるようにとるものとして Brentの方法（３）がある。共役な探索方向は Powell
の方法によって作成されるが、Brentの方法では、（１）restartにおける方向ベクトルの再
設定を特異値分解に基づいて行う、（２）谷や尾根における探索の停留から抜け出すための

ランダム・ステップを導入する、（３）３点を通る２次曲線による極小点の探索を行う、な

どの工夫が加えられている。
ここでの Brentの方法に基づく極値探索法の概略は、以下のようである。

岡本安晴 2001.2.4;2004.7

―8―

（１） 1 ←istep 、 0 ←pNRandomSte とおく。座標値の初期値を 0x に設定する
（２） 0>pNRandomSte であれば、 0x にランダムな変動を加える。

0xx ←s とおく。
1=istep のときは、探索方向、 1S 、・・・、 nS 、を座標軸の方向にとる。
1=istep でないときは、探索方向、 1S 、・・・、 nS 、を（２a）で与える。

（２a） []nSSU L1←
[]210 ,, αααii fd ← ；2階の差分商

とおく。ここで、 () ()ii ff Sx αα += 0 である。

() 21
1

−← ni dddiag LUS の i番目の特異ベクトル

とおく。

（３） ()nf Sx ββ
β

+←∗
0minarg

nSxx ∗+← β00

1←k
とおく。

（４） 01 xx ←

1←i
とおく。

（５） ()if Sx ββ
β

+←∗
1minarg

iSxx ∗+← β11

とおく。
ni < のときは、 1+← ii SS とおく。
ni = のときは、 01 xxS −←n とおく。

1+← ii とおく。
ni ≤ ならば、（５）に戻る。

01 xx ≠ かつ 0=pNRandomSte ならば（６）、そうでないならば（７）に進

む。

（６） ()nf Sx ββ
β

+←∗
0minarg

nSxx ∗+← β01

とおき、（８）に進む。

岡本安晴 2001.2.4;2004.7

―9―

（７） 1←istep
1←pNRandomSte

とおき、（２）に戻る。
（８） 10 xx ←

1+← kk
とおく。

nk ≤ ならば、（４）に戻る。
（９） 2≤istep ならば

0, xx ←istepp

1+← istepistep
とおき、（１０）に進む。

3=istep ならば、

0, xx ←istepp

とおく。

３点、 1,px 、 2,px 、 3,px 、がお互いに異なる点であれば、これらの３点を通る

2次曲線上で極小化を行う。

３点、 1,px 、 2,px 、 3,px 、がお互いに異なる点でないときは

1←istep
とおく。

（１０）「 0xx =s または () ()0xx ff s = 」であれば、この極値探索を終了する。
「 0xx =s または () ()0xx ff s = 」でないときは、（２）に戻る。

上のような手順で極小値の探索を行う手続き MinByBrent をユニットファイル

UOptNoDiff.pasに用意した。MinByBrentのヘッダーは、次のように宣言されている。

 procedure MinByBrent(f // 極小値を求める関数

 : TOptFunc;

 n // 変数の数

 : Longint;

 var x0 // 変数の配列

 : TOptVector;

岡本安晴 2001.2.4;2004.7

―10―

 criterionX, // 変数の変化量の基準

 criterionF // 関数の変化量の基準

 : Extended);

第１パラメータｆに極小値を求める関数、第２パラメータｎに変数の数、第３パラメー

タ x０に初期値を格納した変数用の配列を設定する。極値探索で得られた極小値を与える変
数値は、この第３パラメータの配列に返される。第４パラメータ criterionX と第５パラメ
ータ criterionF には、極小値に達したかどうかの判定に用いる変数値と関数値の変化量の
基準値を設定する。これらの基準値は、相対量および値の絶対値の変化量についてのもの

である。例えば、基準値をｃとし、探索によって値が v1から v2に変わったとするとき、

()2121 vvcvv +<− （相対値）

または

cvv <+ 21 （絶対値）

が成り立てば、極小値に達したと判定している。相対値による基準は精度による判定であ

る。しかし、値 v1 あるいは v2 が０に収束しているときは、この相対値による基準では収
束したと判定されずに限りなく絶対値が小さくなっていき、アンダーフローエラーになる

可能性がある。この場合は、絶対値による基準で判定を行う。
手続き MinByBrent によって極小値を求めるときも、MinByRosenbrock を用いる場合

と同じように行う。（１）式の極小値を求めるときは、関数 Cubeを MinByRosenbrockを
用いたときのように宣言しておき、

 x[1]:=-1.2;

 x[2]:= 1.0;

 MinByBrent(Cube, 2, x, 1.0e-11, 1.0e-15);

というようにMinByBrentを呼出す。
 手続きMinByRosenbrockの使用例であるプロジェクト PCheck.dprでは、MinByBrent
を用いた上の極小値を求める例も扱われている。PCheck.dprの実行開始時のフォーム（図
４）において、「Brent」ボタンをクリックするとリスト２の手続き BGOButtonClickが実
行されて MinByBrent による極小値の探索が行われる。求められた極小値を与える変数値
は、図３のように表示される。

岡本安晴 2001.2.4;2004.7

―11―

リスト２ 手続き MinByBrent の使用例

procedure TForm1.BGOButtonClick(Sender: TObject);

var x : TOptVector;

begin

 x[1]:=-1.2;

 x[2]:= 1.0;

 MinByBrent(Cube, 2, x, 1.0e-11, 1.0e-15);

 Label1.Caption:='x1 = '+FloatToStrF(x[1],ffGeneral,9,4)+

 ' x2 = '+FloatToStrF(x[2],ffGeneral,9,4);

 ExitButton.SetFocus;

end;

中心極限定理
一様分布をする乱数の独立なｎ個の和は、中心極限定理（４）により、ｎを大きくすると正

規分布に近づくことがわかる。このことを、シミュレーションによって見てみることにす

る。
ｎ個の独立な一様乱数の和を多数生成して、その度数分布を最もよく表わす正規分布を

極値探索法によって求め、その正規分布のグラフを生成した乱数の度数分布に重ねて描い

てみる（図５）。ｎの値によって、正規分布のグラフと乱数の度数分布との重なり具合がど

のように変わるのか調べてみる。

岡本安晴 2001.2.4;2004.7

―12―

図５ 一様乱数９個の和の度数分布と正規分布。棒グラフが度数分布を、
釣鐘形の曲線が正規分布を表わす。

一様分布に従う独立なｎ個の確率変数を 1X 、・・・、 nX で表わし、そのｎ個の和を nZ で

表わす。
 10 ≤≤ iX ； ni ,,1L=
 nn XXZ ++= L1
なので、
 nZn ≤≤0
となる。
いま、生成した nZ の値を、区間],0[n を NCat個に等分割したカテゴリーに分けて数え

る。各カテゴリの幅 dは、

NCat

nd =

で与えられる。
生成した乱数 nZ の総数を N、N個の乱数のうちｉ番目のカテゴリ []iddi ,)1(− に分けら

れたものの数を if で表わすと、その相対頻度 ip は

N
f

p i
i =

で与えられる。

岡本安晴 2001.2.4;2004.7

―13―

平均µ、標準偏差σ の正規分布を),;(σµxN で、その確率変数を σµ ,V で表わすと、 σµ ,V

がカテゴリ []iddi ,)1(− に入る確率 iobPr は、 d が十分に小さいとき次式で近似できる。

),,)5.0((Pr σµdiNdobi −⋅≈

したがって、ｎ個の一様乱数の和の分布を最もよく表わす正規分布は、 ip と iobPr がで

きるだけ近い値になるものとして求めることができる。 ip と iobPr の差を全体として表わ

すものとして),(σµSSE を次式で与える。

 ()∑
=

−=
n

i
ii obpSSE

1

2Pr),(σµ

 ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −⋅−=

n

i

i diNd
N
f

1

2

),,)5.0((σµ

ここで、),(σµSSE におけるµとσ は、上式がµとσ の関数であることを表す。
 ｎ個の一様乱数の和 nZ の分布を最もよく表わす正規分布を与える平均µと標準偏差σ
の値を、),(σµSSE の最小値を与えるものとして求める。
一様乱数の和 nZ の分布を調べるプロジェクト PCentral.dprでは、),(σµSSE の最小値

を求めるとき、標準偏差σ に正数という制約があるので次のように変数変換を行っている。

2001.0 x+=σ

すなわち、リスト３に示されているように、関数 OptFuncを配列ｘの関数として与え、

1x=µ 、 2
2001.0 x+=σ

と変数変換を行ってから),(σµSSE を呼出している。

リスト３),(σµSSE の最小値を与える 0>σ を求めるための関数 OptFunc。

// 正規分布関数

function Normal(x, mean, sigma : Extended) : Extended;

 begin

 Normal:=(1/(sigma*sqrt(2*pi)))*exp(-0.5*sqr((x-mean)/sigma))

 end;

岡本安晴 2001.2.4;2004.7

―14―

// 度数分布と正規分布の差の２乗和

function SSE(mean, sigma : Extended) : Extended;

 var d, v : Extended;

 i : Longint;

 begin

 d:=N/NCat;

 v:=0.0;

 for i:=1 to NCat do

 v:=v+sqr((Freq[i]/NTrial)-(d*Normal((i-0.5)*N/NCat,mean,sigma)));

 SSE:=v;

 end;

// SSE を関数値とする極値探索用の関数

function OptFunc(x : TOptVector; h : Longint) : Extended;

 var mean, sigma : Extended;

 begin

 mean:=x[1];

 sigma:=0.001+sqr(x[2]);

 OptFunc:=SSE(mean,sigma);

 end;

極小値を求める手続きは、MinByRosenbrock、あるいはMinByBrentのいずれでも行え
るようになっているが、用いない方の手続きはコメントとしておく。
 極小値の探索手続きを呼出す前に、変数用配列に初期値を次のように与えている。

 x[1]:=N/2.1;

 x[2]:=1.0;

x[1]の値は理論的解 2n=µ に近い値としている。これは、初期値が最小値を与える変数値

から大きく離れていると探索がうまくいかないことがあるからである。極値探索によって

最小値を求めるとき、最小値を与える変数値に近い値を初期値として与えると探索が成功

し易くなる。最小値を与える変数値に近い初期値の見当を付けることが理論的に難しいと

きは、変数の変域をおおまかに格子で区切って、各格子点の値を比較することによって大

体の見当を付けることができる。
また、MinByRosenbrock および MinByBrent では、極小値を与える変数値が絶対値で

0.01～1000 ぐらいの大きさであることを想定している。絶対値が非常に小さいときは変数
の収束判定基準として crtrn_lambdaあるいは criterionXに設定した値が有効に働かない可
能性がある。求まった極小値を与える変数ｘの値が 0.000001など非常に小さいときは、変
数変換によって 1.0ぐらいの値になるようにする。上の例の場合、x＝0.000001×ｔと変換
すると、極小値を与える変数ｔの値は 1.0になる。

岡本安晴 2001.2.4;2004.7

―15―

PCenter.dprを実行すると、図６のようなフォームが表示される。

ｎの設定

図６ 和をとる乱数の個数ｎを設定してから

GO ボタンをクリック

「N=」の右側のエディットコンポーネントに和をとるときの一様乱数の個数ｎを設定する。
「GO」ボタンのクリックで、設定した個数の和 nZ が NTrial（= 100000）個生成され、そ
の度数分布を最も良く近似する正規分布が求められて図７のように描画される。

岡本安晴 2001.2.4;2004.7

―16―

ｎの値の再設定

GOボタンのクリックで、再設定されたｎの値に

よる再計算と再描画が行われる

図７ ｎ＝２に設定して再描画

ただし、図７は、ｎの値を２に再設定した後、GOボタンのクリックで再計算・描画したも
のである。ｎ＝２のときは、生成した乱数 nZ は二等辺三角形の形に分布するが、正規分布

との差異は顕著ではない。ｎ＝９のときの結果は図５に示されているが、この場合の乱数

nZ の分布は釣鐘形になっていて、見た目には正規分布との区別がつかない。
プロジェクト PCenter.dprのユニット UCenterで使用されているユニット URNは、乱

数発生のためのユニットである。このユニットの一様乱数は、合同法によって生成される

ものである（４）。

岡本安晴 2001.2.4;2004.7

―17―

参 考 文 献

（１）S.S.Rao. Optimization: Theory and Applications (Second Edition). Pp.747,

 John Wiley & Sons, 1984.

（２）M.J.Box, D.Davies and W.H.Swann. Non-linear optimization techniques. Pp.60,

 Imperial Chemical Industries Limited, 1969.

（３）R.P.Brent. Algorithms for minimization without derivatives. Pp.195,

 Prentice-Hall,Inc, 1973.

（４）岡本安晴 「Delphi で学ぶデータ分析法」、Pp.275、ＣＱ出版社．1998．

