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方程式の根の計算1 

 

方程式 cxf =)( の根を求めるアルゴリズムについて説明する。まず、解の存在区間が

わかっていて、その区間内で関数が単調関数である場合の方法として Bisection 法をと

りあげる。導関数が与えられている場合には、Bisection 法より効率の良いニュートン

法（Newton－Raphson 法）という方法が使える。導関数が与えられていないときは、微

分係数の値を適当に推定することにより、ニュートン法を適用することができる。以上、

３つの方法を順番に説明する。 

 

Bisection 法 

関数 )(xf が、区間 ],[ ba において単調増加であって、 caf <)( かつ )(bfc < であると

する。 

 

図 1.a  cmf <)( のときは次の区間を ],[ bm とする、

すなわちmをあらためてaとおく。 
 

 

                                                   
1 本解説は、TRY！PC、2000 年７月号「Delphi による数値計算プログラミングのすすめ：第５回 
多重精度算術演算・方程式の根の計算」の原稿をもとにしたものである。 
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図 1.b  cmf >)( のときは次の区間を ],[ ma とする、

すなわちmをあらためてbとおく。 
 

このとき、 cxf =)( 0 となる xの値 0x を、 0x の存在区間の２分割の繰り返しによって求

めることができる１）、２）。すなわち、次のように分割を繰り返す。 

 

（１）
2

ba
m

+
= とおいて、区間 ],[ ba を ],[ ma と ],[ bm に分割する。 

（２）（２．１） cmf <)( なら根 0x は区間 ],[ bm にある（図 1.a）。 ma = とお

く。 

（２．２） cmf =)( なら mx =0 とおいて終了。 

（２．３） cmf >)( なら根 0x は区間 ],[ ma にある（図 1.ｂ）。 mb = とお

く。 

（３）（３．１）aがbに十分近いときは、 ba ≈ であり、 bxa ≤≤ 0 なので、  

            
20

ba
x

+
= とおいて終了。 

     （３．２）aがbに十分近くないときは、（１）に戻る。 
 

上の手順を繰り返すと、１回の繰り返しで ab − の大きさは 2/1 になる。 
いま、次式 

baab m +⋅<− −10             （１） 
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が成り立つまで、区間 ],[ ba の分割を繰り返したとする。このとき、根の推定値の精度

は次のように評価できる。 

  上の（１）～（３）の手順の繰り返しで求めた根の推定値を 0x̂ で、根の真の値を 0x で

表わすと、手順（２．２）において終了した場合を除いて、 

 

bxa ≤≤ 0                             （２） 

かつ 

                        
2

ˆ0
ba

x
+

=                             （３） 

 

となる。 

式（３）は、手順（2.2）によって根 0x̂ が求められた場合は成り立たない。この場合
は、計算機での計算誤差の範囲内で、 0x̂ は真の値 0x に一致している。したがって、以
下の 0x̂ と 0x の差を見る議論では除いて考える。 

式（１）、（２）および（３）より次式 

000 ˆ10ˆ xxx m ⋅<− −  

 

が成り立つ。 

すなわち、算出した根の値 0x̂ のほぼｍ桁目までの精度で、根の真の値 0x が求められ

ていることになる。 

上の Bisection 法によって根を求める手続き Bisection をユニットファイル

UCalcRoot.pas に用意した。手続きヘッダーは、次のようになっている。 

 

   procedure  Bisection( f : TFunc; 

                         s,         //   f が増加関数のとき s > 0.0 

                         c,         //   根に対する関数値 

                         L_b, U_b,  //   根の存在区間の下限と上限 

                         acc,       //   精度 

                         zero       //   ゼロとみなす基準値 

                                    : Extended; 

                         var  Root  //   根  f(Root) = c 

                                    : Extended ); 

 

第１パラメータｆに、根を求める関数を設定する。型 TFunc は 
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type  TFunc = function( x : Extended ) : Extended; 

 

と宣言されている。 

第２パラメータｓは、ｆが根を求める区間 ],[ ba で単調増加のときは正の値、例えば

＋１、を、単調減少のときは負の値、例えば－１、を設定する。 

第３パラメータｃは、根 0x に対応する関数値 cxf =)( 0 を設定する。 

第４，５パラメータは、根 0x の存在区間 ],[ ba 、 bxa << 0 、の下限aと上限bの値
を設定する。区間 ],[ ba において関数が単調関数であるようにaとbを選ぶ。 
第６，７パラメータには、求める根 0x の値の精度と、計算上ゼロとみなす基準値を

設定する。 

最後のパラメータ Root には、求められた根 0x̂ の値が返される。 

手続き Bisection を用いて８の 3乗根を求めるプログラム例 PBisection.dpr を用意

した。このプログラムの実行で表示されるフォーム上のＧＯボタンをクリックすると、

手続き Bisection による３乗根の計算が始まる。 

３乗根を求めるために、３乗を計算する関数が 

 

      function Power3( x : Extended ) : Extended; 

        begin 

                Power3 := x * sqr(x); 

        end; 

 

と宣言されている。この関数に対して、手続き Bisection を 

 

Bisection( Power3, 1.0, 8.0, 1.0, 10.0, 1.0e-17, 1.0e-19, v ); 

 

と呼出して、８の３乗根を求めている。手続き Bisection を呼出すためには、手続き

Bisection の宣言されているユニット UCalcRoot の使用を uses 節において宣言してお

く。 

求められた３乗根は、フォーム上のラベルコンポーネント Label1 の Caption コンポ

ーネントに設定表示される(図 2)。 
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図２ ８の３乗根の PBisection.dpr による計算結果 

 

ユニット UCalcRoot のフォーム（フォームファイル UCalcRoot.dfm のフォーム）は、

Bisection の実行時に表示することができる。このフォームには、Memo コンポーネント

が貼り付けてある。Bisection の実行中における中間結果が、この Memo コンポーネン

トに表示される。Bisection による計算がなかなか終わらないときは、この Memo コン

ポーネントに計算の途中経過を表示させることによって、計算が終了しない原因を調べ

ることができる。このフォームを表示すると、計算における処理時間が Memo コンポー

ネントの処理のため余計に掛かるので、普通はフォームが表示されないようにしておい

て Bisection を呼出す。アップロードしてあるユニットファイル UCalcRoot.pas では、

フォームの生成・廃棄および Memo コンポーネントへの表示に関わるところは//を付け

たり｛ ｝で囲んだりしてコメントとしてある。これらの//や｛ ｝をはずすと、Bisection

の呼び出しでフォームが表示され、Memo コンポーネントに計算の途中経過が表示され

る。 

 

ニュートン法 

Bisection 法においては、根の精度は１回の繰り返しで 2/1 になる、すなわち２進数
表記で１桁精度が上がる。しかし、関数の導関数が与えられているときは、より速く精

度を上げることが可能である。この導関数を利用する方法として、ニュートン法１）、３）、

２）について説明する。 

ニュートン法では、根 0x の近くの値 1x が与えられたとき、 1x よりよい根の推定値 2x

を、点 ))(,( 11 xfx を通る接線を用いて求める（図３）。 

点 ))(,( 11 xfx を通る接線は 

                   )(')()( 111 xfxxxfy ⋅−+=  

で与えられる。この接線と直線 
                             cy =  

との交点のｘ座標 2x を新しい根の推定値とする。接線の式に点 ),( 2 cx を代入すると次
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式を得る 

                    )(')()( 1121 xfxxxfc ⋅−+=  

上式を 2x について解くと 

                         
)('

)(

1

1
12 xf

xfc
xx

−
+=                         （４） 

となる。 

 

図３  接線 )(')()( 111 xfxxxfy ⋅−+= による根の推定値の更新 

 

 

ニュートン法は、（４）式によって根の推定値の更新を行うもので、以下のような手

順になる。 

 

（１）現在の根の推定値 1x から次式 

                      
)('

)(

1

1
12 xf

xfc
xx

−
+=  

    により新しい推定値 2x をもとめる。 
（２）（２．１） 2x が 1x に十分近ければ、 2x を根の値として終了する。 
（２．２） 2x が 1x に十分近くないときは、 2x を現在の根の推定値 1x として（１）

に戻る。 
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上の手順における１回の更新で、根の推定値の精度がどれぐらい上がるのか調べてみ

る。 

関数 )(xf のテイラー展開を次のようにおく１）。 

             ))((''
2

)(
)(')()()(

2
1

111 xf
xx

xfxxxfxf ξ
−

+−+=               

ここで、 )(xξ は 1x と xの間にある数である。 
上式において 0xx = とおくと 

       ))((''
2

)(
)(')()()( 0

2
10

11010 xf
xx

xfxxxfxfc ξ
−

+−+==           （５） 

となる。 

また、点 ),( 2 cx を接線の方程式に代入して、 
               )(')()( 1121 xfxxxfc −+=                               （６） 

となる。 

（５）式から（６）式を引くと、次式が得られる。 

          ))((''
2

)(
)(')(0 0

2
10

120 xf
xx

xfxx ξ
−

+−=  

上式を変形して、 

            
)('2

))((''

1

00

2

0

10

0

20

xf
xfx

x

xx

x

xx

⋅
⋅

⋅








 −
=

− ξ
                     （７） 

となる。上式は、誤差が２乗のオーダーで減少（２乗収束３））することを表わしている。 

いま、 1x の精度が、次式の意味でｍ桁であるとする。 

                         m

x

xx −≈
−

10
0

10  

このとき、（７）式において ))('2())(('' 100 xfxfx ⋅⋅ ξ の項を無視すると、 

                        m

x

xx 2

0

20 10−≈
−

 

となる。ニュートン法では、１回の繰り返しで精度が２倍になることが期待される。 

Bisection 法の場合は、根の存在区間 ],[ 11 ba の長さが 

                           mab −≈− 1011  

のとき、次（更新後）の存在区間 ],[ 22 ba の長さは 
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                    )3.0(
22 1010

2
1 +−− ≈⋅≈− mmab  

となるので、１回の繰り返し（更新）による精度の向上は約 0.3 桁と考えられる。 

以上のことより、ニュートン法の効率の良さがわかる。 

手続き Newton はニュートン法によって根を求めるもので、ユニットファイル

UCalcRoot.pas に宣言されている。関数ヘッダーは次のようになっている。 

 

procedure Newton( var x : Extended;  //  根の初期値、戻り値は根 f(x)=c 

                  c,                 //  関数値 

                  L_b, U_b           //  根の存在範囲の下限と上限 

                        : Extended; 

                  f,                 //  関数 

                  df                 //  導関数 

                        : TFunc; 

                  acc,               //  精度 

                  zero               //  ゼロの基準値 

                        : Extended ); 

 

第１パラメータには、根の推定値の初期値を設定した変数をおく。Newton の実行終

了後、算出された根の値がこの変数に返される。 

第２パラメータには、根 0x に対する関数値 )( 0xfc = を設定する。 

第３、４パラメータには、根の存在範囲の下限と上限を設定する。これらの値は、（４）

式による解の更新値がこれらの下限と上限の範囲を超えないようにチェックするのに

用いられている。 

第５，６パラメータには、根を求める関数とその導関数を設定する。 

第７，８パラメータには、求める根の精度とゼロとみなす基準値を設定します。 

手続き Newton によって８の３乗根を求めるプログラム例が PNewton.dpr である。こ

のプロジェクトのユニット UNewton.pas では、手続き Newton を用いるために、uses 節

でユニット UCalcRoot の使用が宣言されている。また、３乗を与える関数とその導関数

は、次のように宣言されている。 

 

            function Power3( x : Extended ) : Extended; 

              begin 

                    Power3:=x*sqr(x); 

              end; 
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           function DPower3( x : Extended ) : Extended; 

             begin 

                   DPower3:=3*sqr(x); 

             end; 

 

上の宣言に基づいて、８の３乗根を求めるために手続き Newton が次のように呼出さ

れている。 

 

    x:=1.0; 

    Newton( x, 8.0, 0.0, 10.0, Power3, DPower3, 1.0e-17, 1.0e-19 ); 

 

求めた根の値は、Label コンポーネントの Caption プロパティに設定・表示される。 

プロジェクトファイル PNewton.dpr の実行開始時に表示されるフォームのＧＯボタ

ンをクリックすると計算が始まる。 

ユニット UCalcRoot の手続き Newton では、手続き（１）～（２）の繰り返しが２０

回を超えると Bisection 法を呼出すようになっている。これは、ニュートン法において

同じ数値の組み合わせが交互に現れることがあるからである（図４）。 

 

図４ ニュートン法において一組の数値が交互に根の推定値となる場合 

 

例えば、関数 

                       xx ee
xf −+

−
+

=
1

1
1

1
)(  
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の場合、 0)( =xf に対する根 0=x を求めるとき、図４のような現象になる。図４のよ

うな場合でも、根を含む区間内で関数が単調であれば、手続き Bisection を用いて確実

に根を求めることができる。 

このことを示すプロジェクトを PNewtonE.dpr として用意した。このプロジェクトで

は、ニュートン法で根を求める手続き Newton は UCkNewton.pas で宣言されているもの

を用いている。このNewton法では、Memoコンポーネントをもつフォームが表示されて、

計算の途中結果（根の推定値）が Memo コンポーネントに表示される。ニュートン法に

おける１００回の繰り返しの後、ShowMessage が呼び出されてプログラムの実行が一時

停止する。この一時停止中に、Memo コンポーネントに表示されている値を確認するこ

とができる。-33.3･･･と 33.3･･･が交互に現れていて、図４の状態になっていることが

わかる。ShowMessage で表示されるダイアログボックスが邪魔でよく見えないときは、

ダイアログボックスをドラッグして移動する。ダイアログボックスのＯＫボタンをクリ

ックするとプログラムの実行が再び始まり、今度は Bisection が呼出され、計算の途中

経過が Memo コンポーネントに表示される。Bisection 法によって根が求まると、Memo

コンポーネントをもつUCkNewton.dfmのフォームは閉じられて、メインのUNewtonE.dfm

のフォームに求めた根の値が表示される。 

 

Secant 法 

ニュートン法は、成功したときは bisection 法より効率がいいが、導関数が必要であ

る。Secant 法では、手順の繰り返しで得られる根の２つの推定値 1x と 2x 、およびその
関数値 )( 1xf と )( 2xf を用いて導関数の値の推定を行う。すなわち、以下のような手順

になる。 

 

（１）根の 2つの推定値を 1x と 2x とする。 
（２）導関数の値 )(' 2xf を 

                        
12

12 )()(
xx

xfxf
df

−
−

=  

で推定する。 

（３） )(xfc = の根の推定値を 

             21 xx ←   および  
df

xfc
xx

)( 2
22

−
+←  

で更新する。記号   ← は、記号の右側の値を左側に設定することを表わす。 
（４）(4.1) 2x が 1x に十分に近い値のときは、 2x を根の推定値として終了する。 
(4.2) 2x が 1x に十分に近い値でないときは、（２）に戻る。 

 

ユニットファイル UCalcRoot.pas に宣言されている手続き Secant は、上の secant 法
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の手順で根を求めるものである。手続きヘッダーは 

 

 procedure Secant( var x : Extended;  //  根の初期値、戻り値は根 f(x)=c 

                   c,                 //  関数値 

                   L_b, U_b           //  根の存在範囲の下限と上限 

                             : Extended; 

                   f     : TFunc;     //  関数 

                   acc,               //  精度 

                   zero               //  ゼロの基準値 

                         : Extended ); 

 

となっている。手続き Newton の場合と比べると、導関数を設定するためのパラメータ

df がないことを除いて Newton と同じである。 

プロジェクト PSecant.dpr は、手続き Secant を用いて８の３乗根を求めるものであ

る。実行開始時のフォームのＧＯボタンのクリックで計算が始まり、求められた根はフ

ォームに表示される。 

 

偏差値（Ｔ得点）の計算 

根の計算の応用例として、偏差値を求めるプログラムを作成した。 

偏差値（Ｔ得点）とは、パーセンタイル値 p100 に対して、 

                        ∫ ∞−
=

z
dxxp )(φ  

となる値 zから算出される値 
                           zT 1050 +=  

のことである４）。ここで、 )(xφ は標準正規分布を表わす。また、パーセンタイル値は、

得点を最下位から数えて何パーセントの位置にあるのかを表わすものである。最下位か

ら 1/4 の位置にある得点は 25 パーセンタイルの位置にあり、3/4 の位置にある得点の

パーセンタイル値は 75である。 

上式の pは zの関数になっていて、その導関数は次式で与えられる。 

                        )(z
dz
dp

φ=  

導関数が与えられているので、偏差値を求めるプロジェクト PTscore.dpr では、手続

き Newton を用いて pに対する zの値を求めている。 

プロジェクト PTscore.dpr の実行で表示されるフォーム上の GO ボタンをクリックす

ると、図５のようなフォームになる。 
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ここにパーセンタイル値を設定して、Ｃａｌｃボタンをクリック 

 

図５ GO ボタンのクリックで表示される画面 

 

 

 

 

画面左上のエディットコンポーネントにパーセンタイル値 p100 の値を設定してから
Calc ボタンをクリックすると、図６の画面のようにパーセンタイル値 p100 に対する偏

差値の値が表示され、対応する領域が緑色で塗り潰されて図示される。 
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図６ 計算結果の表示 

 

再度、エディットコンポーネントにパーセンタイル値を設定し直して Calc ボタンをク

リックすると、再設定された値で再計算が行われ、偏差値が表示・図示される。 

プロジェクトPTscore.dprで用いられているユニットUIntegralは積分を計算するた

めのユニットである。ホームページ「積分の計算」に詳しく説明した。 
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