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ニューラルネット PDP1 
Parallel Distributed Processing 

 

神経細胞の働きを図 1 のようにモデル化したものを考え、ニューロンあるいはユニット

と呼びます。 

 
図１ ニューロン（ユニット）のモデル 

 

ここでのニューロンあるいはユニットという言葉は、生体内の神経細胞そのものではなく、

図 1 で表わされるモデルに対して用います。このニューロンあるいはユニットは、単一の

神経細胞のモデルである必要はなく、機能的に１つにまとめて扱うことができるものを表

わしていると考えます。 

ニューロンは、いくつかの入力を受けて、それらの重み付き和の値に応じて出力が決ま

ります。 

入力、および出力は、０以上１以下の値であるとします。０に近いほどニューロンの活

動レベルは低く、１に近いほど活動レベルは高いことを表わします。 

１つのニューロンｊへの入力がｂ個あるとき、それらを I Ib1 , ,L で表わし、それらに対

                                                 
1 この解説は、岡本安晴「Delphi でエンジョイプログラミング：心と行動の科学がわかる
心理学シミュレーション」ＣＱ出版社、1999（絶版）の原稿をもとに作成しました。 
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する重みをw1、…、wbで表わすと、ニューロンｊへの入力の重み付き和net jは次式で与え

られます。 

                              net w Ij i i
i

b

=
=
∑

1

 

入力の重み付き和net jに対するニューロンｊの出力を与える関数 f netj j( )を次のように

おきます。 

                         f net
ej j net j j

( ) ( )=
+ − +

1
1 θ  

θ jはニューロンｊの閾値に対応するものです。 

関数 

                       y f x
e x= =

+ −( )
1

1
 

は、図 2 のような形のものです。 

 

図２ 関数
xe

xfy
−+

==
1

1
)(  

 

Rumelhartら（1986）のニューラルネット PDP（Parallel Distributed Processing）モ

デルでは、刺激の入力のためのニューロンの集まり（入力層）と、それらに対する反応を

表わすニューロンの集まり（出力層）の２つの層の間に、１つ以上のニューロンの集まり

（中間層）を置きます。図 3 は、中間層が１層の場合のモデルです。 
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図３ PDPモデルの例 

 

入力層に刺激パターンを与えたとき、出力層からの反応が、予め正しい反応パターンと

して設定されているものになるように、重みwiを変化させます。PDPモデルでは、このた

めの方法として誤差逆伝播法と呼ばれている次のような方法が用いられています。 

刺激パターンｐを入力層に与えたときの出力層のユニットｊの出力をopjで表わします。

このパターンｐに対して出力ユニットｊが出力するべき反応量を t pjで表わします。この t pj

は、ニューラルネットに、入力パターンｐに対する反応パターンとして学習させる出力な

ので、教師信号と呼ばれています。 

ニューラルネットの学習は、誤差量として与えられる次の目的関数 

                      E t op pj pj
j

= −∑1
2

2( )                            （1） 

が最小になるように、ニューロンｉからｊへの重みw jiなどを変えていくことによって行わ

れます。Epの添え字ｐは、パターンｐに対する誤差量であることを表わします。 

Epを最小化するw jiの値は、最急降下法の考え方で求めます。すなわち、w jiの値を−
∂
∂

E
w

p

ji

の方向に変化させます。 
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まず、 

                       
∂
∂

∂
∂

∂
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ji
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と変形します。ここで、net pjはパターンｐに対するニューロンｊへの入力の重み付き和 

                            net w opj ji pi
i

= ∑  

です。上式のΣ記号におけるｉは、ニューロンｊへの入力ニューロンｉとして接続されてい
るすべてのニューロンｉについての和であることを表わします。opiはニューロンｉのパタ

ーンｐに対する出力です。 

                            δ
∂

∂pj
p

pj

E
net
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とおきます。 

δ pjを次のように変形します。 
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ここで、 

                          o f netpj j pj= ( )  

なので、 
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となります。 
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より、 
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となります。 

ここで、次式 
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が成り立つので、 
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                   f x f x f xj j j
'( ) ( ( )) ( )= − ⋅1  

となります。 

ゆえに、 
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pj
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となります。 

式（2）～（4）より、 
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ここで、 
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                            = opi                                    （5） 

が成り立ちます。上式の∑ 記号におけるｈは、ニューロンｊに接続されている入力ニュ
ーロンｈにわたる和であることを表わします。 

  したがって、 
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となります。 

いま、ニューロンｊが出力層のもの（図 4）であるとすると、 
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となります。上式のΣ記号におけるｋは、出力層のニューロンｋすべてにわたる和であるこ
とを表わします。 
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図４ ユニットｊが出力層に属するとき 

 
したがって、出力層のニューロンｊへの入力の重みw jiについては、次式を得ます。 
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図５ ニューロンｊが出力層に属さないとき 

 
ニューロンｊが出力層のものではないときは、ニューロンｊの出力opjは、より上位のニュ

ーロンｋを経由して出力層の出力に反映されます。したがって、 
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となります。ここで、Σ記号におけるｋは、ニューロンｊの出力opjを直接受け取っている

ニューロンｋすべてにわたる和であることを表わします。 

また、 

                      
∂
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∂
net
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w opk

pj pj
kh ph
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                             = wkj  

です。ここで、Σ記号におけるｈは、ニューロンｋへの入力ニューロンｈ全体にわたる和で
あることを表わします。 

式（3）の記法に合わせて、 
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とおけば、式（6）は次のように書けます。 
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よって、式（3）、（4）より、 
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上式において、δ pjの値は、より上位のニューロンｋのδpkを用いて求められています。す

なわち、δpkの値が、信号opjの流れと逆の方向に伝わっています。このことから、式（7）

による方法は誤差逆伝播法（Error Back Propagation）と呼ばれています。 

式（7）、および式（2）、（3）、（5）より、 
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となります。 

Epを小さくするためのw jiの変化量を−
∂
∂

E
w

p

ji

の方向にとるとき、その変化量∆ p jiw を次の

ようにおきます。 
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ηの値は、Rumelhartら（1986, p.334）では 

                                η = 0 25.  

となっています。 

∆ pのｐは、パターンｐに関する最小化を表わしています。すなわち、式（8）による最小

化は、パターンごとに行います。 

これに対して、学習パターン全てにわたって同時に最小化を行う方法（一括学習法）も

あります。豊田（1996）におけるニューラルネットによるデータ分析では、一括学習法が

使われています。 

式（8）による最小化をより効果的に行うために、慣性法と呼ばれている次式によってw ji
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の値を変えます。 
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ここで、∆ p jiw m( )は、最小化のｍ番目のステップにおけるw jiの変化量を表わします。式

（9）は、ステップｎ＋１における変化量に、直前のステップｎにおける変化量をmomentum 

termとして少し加えておくことを表わしています。αの値は、Rumelhartら（1986, p.330）

では、0.9がよく用いられたものとなっています。 

ＰＤＰモデルのプログラム例が PPDP.dprです。 

メインユニット UPDP.pasのフォーム Form1 は、プログラミング時に図 6 のように用意

されています。 

Image1 
 

図６ メインユニットのフォーム Form1 

 

Panel1 上の Image1は学習用刺激パターンの設定に用います。 

刺激パターンの弁別学習を行うためのユニット Ulearning.pasのフォーム LFormは、プ

ログラミング時に図 7 のように用意されています。 
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図７ 弁別学習のユニット Ulearning.pasのフォーム LForm 

 

弁別テストを行うためのユニット UDiscrimi.pasのフォーム FDiscrimiは、プログラミ

ング時に図 8 のように用意されています。 

Image1 
 

図８ 弁別テストのユニット UDiscrimi.pasのユニット FDiscrimi 

 

３つのフォーム（図 6,7,8）の親子関係は、図 9 のようになっています。 
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図９ フォームの親子関係。 

 

矢印の根元の方のフォームのユニットにおいて、矢印の先の方のフォームが生成されます。 

ユニットの uses 節による関係は、図 10 のようになっています。矢印の根元の方のユニ

ットの uses節において、矢印の先の方のユニットの使用が宣言されています。 

 

図１０ ユニットの関係。 
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ＰＤＰモデルは、クラス型 TSubjectとして構成されています。TSubject型によって生成

されたオブジェクトは、クラス型変数 Subject で表わされています。TSubject 型によって

表わされているＰＤＰモデルは、入力層、出力層と１つの中間層からなるニューラルネッ

トです。入力層 InputNeuronsは１００個のニューロン、中間層HiddenNeuronsは１０個

のニューロン、出力層 OutputNeuronsは３個のニューロンで構成されています（図 11）。 

 

 
図１１ TSubject型でのニューラルネット 

 

TSubject型のオブジェクトは、コンストラクタ Createで生成します。刺激パターンの学

習はメソッド StudyPattern、弁別はメソッド Discriminateで行っています。 

学習パターンの設定は、プログラムの実行開始時に表示されるフォーム（図 12）上で行

います。図 12 のフォームは、プログラムの実行開始時に表示されるものです 

 

 

 

 

 

 

 

 

 

 

 



岡本安晴 2001.5 

―13― 

 

図１２ プログラムの実行開始時に表示されるフォーム 

 

フォームの小円を左ボタンでクリックする、あるいは、左ボタンを押したまま小円の上

でマウスの矢印を動かすと、その小円の色が赤に変わります。右ボタンによるクリック、

あるいは右ボタンを押した状態でのマウスの移動のときは、緑色に変わります。 

クラス型 TSubject は、３つのパターンの弁別を学習するものです。学習は、出力層

OutNeuronsの反応パターンが、学習されるべき反応パターン Targetにできるだけ近くな

るように行われます。３つの刺激パターンは Pattern1、Pattern2、Pattern3 に設定され、

学習反応パターン（教師信号t pj）は Targetで与えられます。K番目のパターン PatternK

に対しては Target[K]のみが１に設定されます。 

学習用の弁別パターンは、例えば図 13～15 のように設定してから、Store-1 をクリック

すると Pattern1 に、Store-2 をクリックすると Pattern2 に、Store-3 をクリックすると

Pattern3 に格納されます。赤い小円が１、緑の小円が０として格納されます。入力層に与

えられたパターンは、入力層の赤の小円に対応する部位のニューロンが刺激されて興奮し

ていると解釈します。 
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図１３ パターン１の設定。設定後、Store-1 ボタンを押す。 

 

 

図１４ パターン２の設定。設定後、Store-2 ボタンを押す。 
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図１５ パターン３の設定。設定後、Store-3 ボタンを押す 

 

Pattern1～Pattern3 に設定されているパターンは、Load-1～Load-3 ボタンのクリック

によって表示して確認することができます。 

３つの弁別パターンの設定後、Trainingボタンをクリックすると、図 16 のようなフォー

ムが表示されます。 

 
図１６ Trainingボタンのクリックで表示されるフォーム 

 

Startボタンをクリックすると学習が始まります。 
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学習は、StudyPattern メソッドによる３つの刺激パターンの学習、および、それに続く

弁別テストとその成績の表示の繰り返しによって行われています。学習されるべき入力パ

ターンとして与えられている３つのパターンそれぞれについての２０回分の正答率が、フ

ォームの上部に表示されます（図 17）。 

 
図１７ 学習中のフォーム 

 

その下に、３×３の形式で出力ユニットの値が表示されます。ｉ行目のｊ列目の値は、パ

ターンｉに対するｊ番目の出力ユニットの値です。対角線上の値が１に近く、それ以外の

値は０に近くなるまで学習を進めます。十分に１、あるいは０に近くなったところで、Stop

ボタンをクリックして学習を止めます。 

 
図１８ 学習の終了 

 

図 18 は、対角線上の値が 0.98以上、それ以外の値が 0.02以下になったところで Stopボ

タンをクリックしたものです。Exitボタンのクリックでメインフォームに戻ります（図 19）。 
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図１９ メインフォームに戻る 

 

 

 

図 19 のフォームの Discrimi ボタンをクリックすると、弁別テスト用のフォーム

FDiscrimiが生成・表示されます（図 20）。 
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What
ボタン 

反応 

 
図２０ パターンに対する弁別反応。パターンを設定して、

「What ?」ボタンを押す。 

 

弁別テスト用パターンを適当に設定して、「What?」ボタンをクリックすると、手続き

WButtonClickが呼び出され、設定されたパターンに対する出力の一番大きい出力ユニット

の番号が、弁別反応として Editコンポーネントに表示されます。出力の一番大きい出力ユ

ニットは、メソッド MaxID によって求められています。 

弁別テスト用パターンの設定は、学習用パターンの設定と同じ方法で行います。弁別テ

スト用パターンは、学習パターンと全く同じものでなくても、それに近いものであれば、

その近い学習パターンに対する反応が、弁別テスト用パターンに対する反応として Editコ

ンポーネントに表示されることが多いと思います。いろいろ試してみて下さい。 

 

図 20 のフォームで Exitボタンをクリックすると、図 21 のメインフォームに戻ります。

このフォームの Exitボタンのクリックで、プログラムは終了します。 
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図２１ メインフォームの Exitボタンのクリックでプログラムは終了する。 
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